Combining Machine Learning Defenses without ConflictsPaperCode Vasisht Duddu, Rui Zhang, N. Asokan
Under Submission
LLM-CI: Assessing Contextual Integrity Norms in Language ModelsPaperCode
Yan Shvartzshnaider, Vasisht Duddu, John Lacalamita
Under Submission
Laminator: Verifiable ML Property Cards using Hardware-assisted AttestationsPaperCodePoster @ S&P'24 Vasisht Duddu, Oskari Järvinen, Lachlan J. Gunn, N. Asokan
Under Submission
Espresso: Robust Concept Filtering in Text-to-Image ModelsPaperCode
Anudeep Das, Vasisht Duddu, Rui Zhang, N. Asokan
Under Submission
2024
SoK: Unintended Interactions among Machine Learning Defenses and RisksPaperCodeBlog Vasisht Duddu, Sebastian Szyller, N. Asokan
IEEE S&P'24 IEEE Symposium on Security and Privacy ( Distinguished Paper Award) News Industry Impact: Amulet: A Library for Evaluating Interactions among ML Defenses and Risks Code
GrOVe: Ownership Verification of Graph Neural Networks using EmbeddingsPaperCode
Asim Waheed, Vasisht Duddu, N. Asokan
IEEE S&P'24 IEEE Symposium on Security and Privacy
Attesting Distributional Properties of Training Data for Machine LearningPaperCode Vasisht Duddu, Anudeep Das, Nora Khayata, Hossein Yalame, Thomas Schneider, N. Asokan
ESORICS'24 European Symposium on Research in Computer Security
On the Alignment of Group Fairness with Attribute PrivacyPaperCode
Jan Aalmoes, Vasisht Duddu, Antoine Boutet
WISE'24 International Web Information Systems Engineering Conference
2023
Comprehension from Chaos: What Users Understand and Expect from Private ComputationPaperCode
Bailey Kacsmar, Vasisht Duddu, Kyle Tilbury, Blase Ur, Florian Kerschbaum
ACM CCS'23 ACM Conference on Computer and Communications Security
2022
Inferring Sensitive Attributes from Model ExplanationsPaperCode Vasisht Duddu, Antoine Boutet
ACM CIKM'22 ACM International Conference on Information and Knowledge Management
Towards Privacy Aware Deep Learning for Embedded SystemsPaperCode Vasisht Duddu, Antoine Boutet, Virat Shejwalkar
ACM SAC'22 ACM Symposium On Applied Computing
NeurIPS PPML'20 Workshop on Privacy Preserving Machine Learning
2021
Good Artists Copy, Great Artists Steal: Model Extraction Attacks Against Image Translation GANsPaperCode
Sebastian Szyller, Vasisht Duddu, Tommi Gröndahl, N. Asokan
Technical Report'21
2020
Quantifying Privacy Leakage in Graph EmbeddingPaperCode Vasisht Duddu, Antoine Boutet, Virat Shejwalkar
MobiQuitous'20 EAI International Conference on Mobile and Ubiquitous Systems
NeurIPS PPML'20 Workshop on Privacy Preserving Machine Learning
Fault Tolerance of Neural Networks in Adversarial SettingsPaperCode Vasisht Duddu, N. Rajesh Pillai, D. Vijay Rao, Valentina E. Balas
JIFS'20 Journal of Intelligent & Fuzzy Systems
Towards Enhancing Fault Tolerance in Neural NetworksPaperCode Vasisht Duddu, D. Vijay Rao, Valentina E. Balas
MobiQuitous'20 EAI International Conference on Mobile and Ubiquitous Systems
Quantifying (Hyper) Parameter Leakage in Machine LearningPaperCode Vasisht Duddu, D. Vijay Rao
IEEE BigMM'20 IEEE International Conference on Multimedia Big Data
2018
Stealing Neural Networks via Timing Side ChannelsPaper Vasisht Duddu, Debasis Samanta, D Vijay Rao, Valentina E. Balas
Technical Report'18
Theses
Towards Effective Measurement of Membership Privacy Risk for Machine Learning ModelsThesis Vasisht Duddu Master's Thesis, University of Waterloo, 2022 Technical Report'21 SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu, Sebastian Szyller, N. Asokan