

Trustworthy Deployment of Machine Learning Systems

Vasisht Duddu

✉ vasisht.duddu@uwaterloo.ca

vasishtduddu.github.io

About me

Ph.D. student, University of Waterloo (Canada)

Advisor: N. Asokan

Previously: Masters @ University of Waterloo, Undergraduate @ IIIT-Delhi, India

Security and privacy researcher working on making ML systems trustworthy

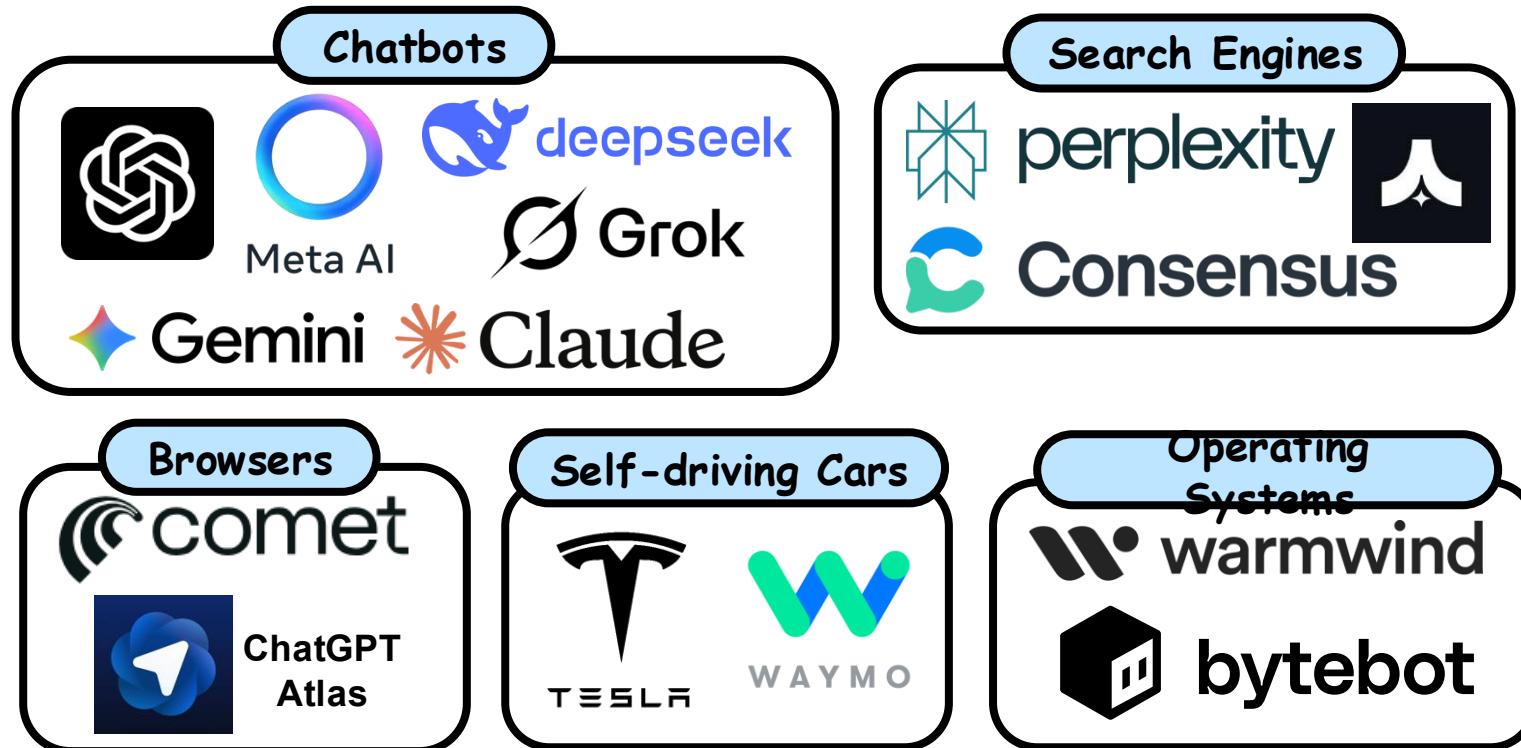
- IBM Ph.D. Fellowship (2024)
- Distinguished Paper @ IEEE S&P (2024)
- Best Paper @ ACM CODASPY (2025)
- Technology transfer to Intel (2025)

<https://vasishtduddu.github.io/>

Introduction

Significant utility improvement in machine learning (ML) → Wide-scale deployment

- Client-facing services (e.g., chatbots, search engines, browsers)
- High-stakes applications (e.g., healthcare, criminal justice)
- Part of larger systems (e.g., operating systems, autonomous vehicles)



Deployment Concerns

Infrastructure

Latency, throughput, interoperability, scalability,....

Model Design

Utility, generalization, hyperparameter tuning, data processing

Environment

Carbon emissions, power consumption, water usage

Safety Risks

Misinformation, surveillance, misalignment, cyberattacks,

Adversarial Risks

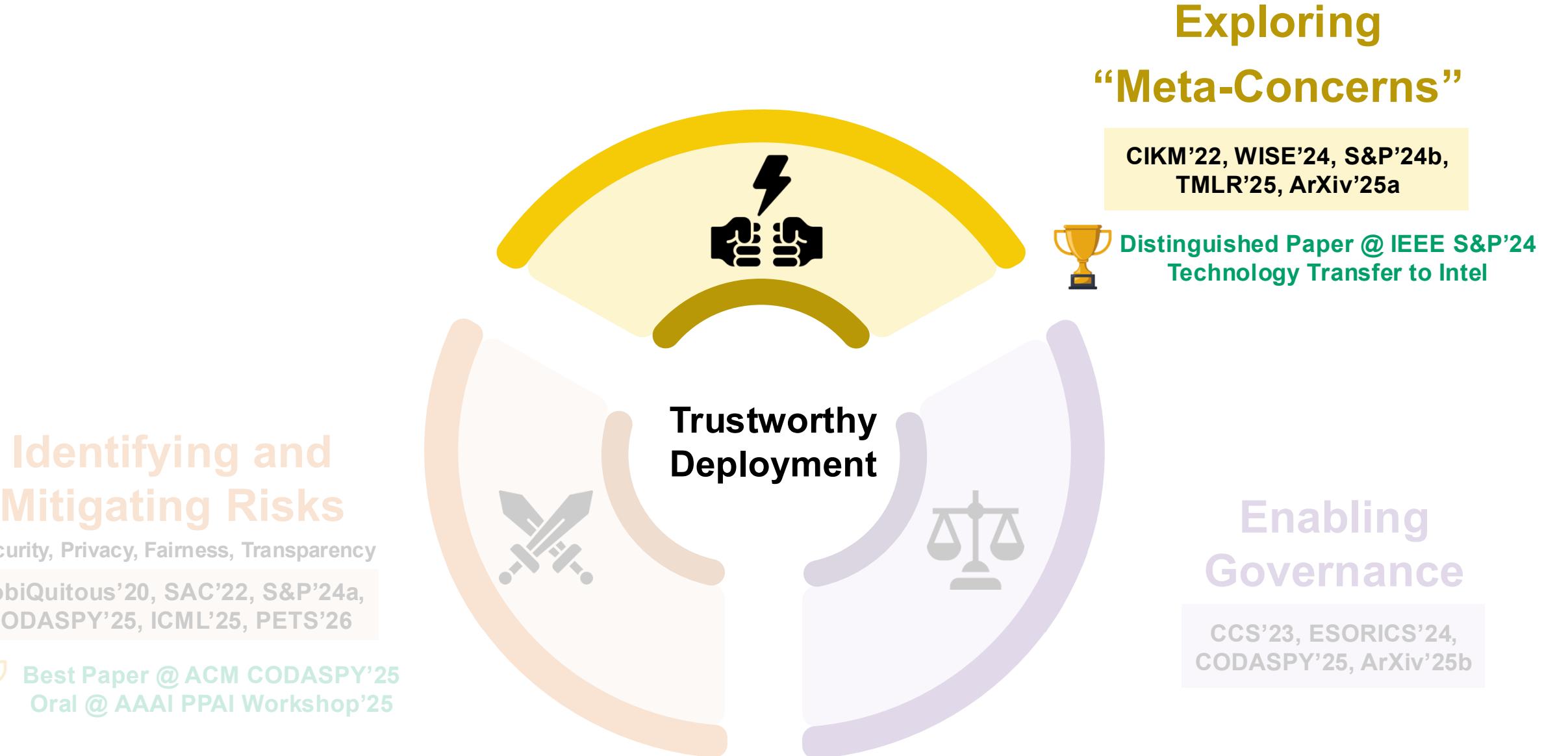
Security, privacy, fairness, transparency, unintended interactions

Governance

Accountability, regulatory compliance, verifiability

Trustworthy Deployment

Talk Overview



Overview of ML Risks and Defenses

Evasion and Jailbreak

Perturb inputs to force misclassification or forbidden output

→ Adversarial training and robust alignment

Unauthorized Model Ownership

Steal functionality of target model

→ Watermarking and fingerprinting

Poisoning/Backdoor

Manipulate training data or model or training to degrade utility or generate adversary-chosen output

→ Outlier robustness (data sanitization, finetuning, pruning)

Unauthorized Data Usage

Use of copyrighted or personal data without consent

→ Watermarking

Security

Inference Attacks

Infer sensitive information from model: membership, attribute, distribution inference, data reconstruction

→ Differential privacy

Bias and Incomprehensibility

Model behaves differently across demographic subgroups, and unclear why model made specific predictions

→ Individual and group fairness; Post-hoc explanations

Privacy

Fairness

Exploring “Meta-Concerns”: Contributions

Not enough to design effective defenses against individual risks

Practitioners need to protect against multiple risks simultaneously

Problem 1

Unintended Interactions
among Defenses and Risks

Why does defense **increase** or
decrease unrelated risks?

CIKM'22

WISE'24

S&P'24

Distinguished Paper

Problem 2

Conflicts among Defenses
when Combined

How can defenses be combined
without conflicts?

TMLR'25

Problem 3

Colluding Adversaries in
ML Pipelines

How can **adversaries collude** by exploiting
one risk to increase others?

ArXiv'26

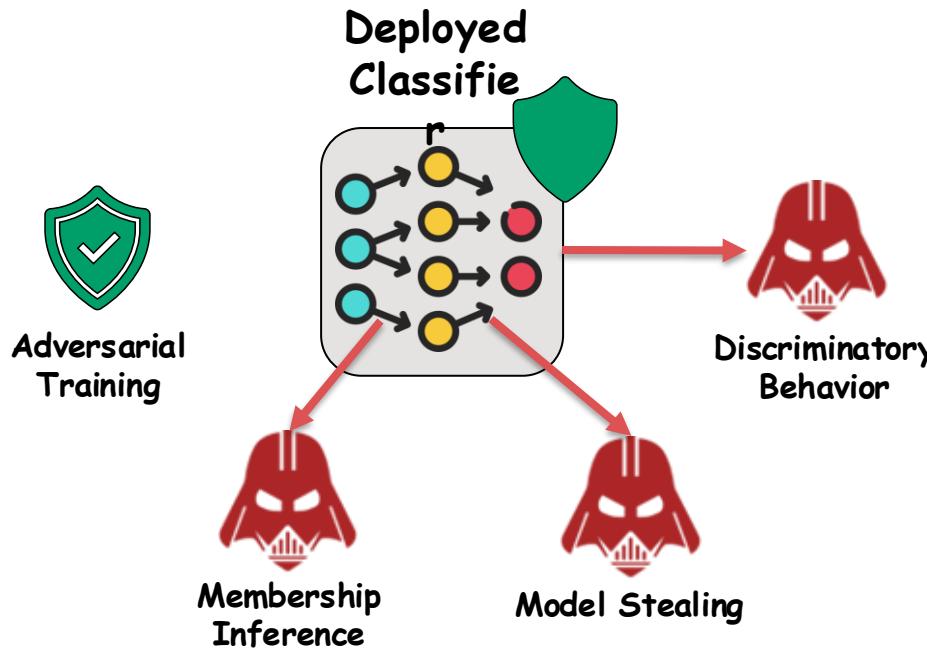
(Under submission)

Guideline for practitioners to **predict** unintended
interactions or conflicts **without expensive evaluation**

Problem 1: Defenses vs. Unrelated Risks

S&P'24

Distinguished Paper



Prior work **limited to specific risks and defenses**^[1,2,3]
No systematic framework to study underlying reasons

Conjecture: Overfitting and memorization are underlying causes

- Effective defenses influence overfitting or memorization
- Risks tend to exploit factors influencing overfitting or memorization

Example

Adversarial training **increases** membership inference, model stealing, and discriminatory behavior^[2,3]

[1] Ferry et al. *SoK: Taming the Triangle - On the Interplays between Fairness, Interpretability and Privacy in Machine Learning*. ArXiv. 2024.

[2] Gittens et al. *An Adversarial Perspective on Accuracy, Robustness, Fairness, and Privacy: Multilateral-Tradeoffs in Trustworthy ML*. IEEE Access. 2024.

[3] Strobel and Shokri. *Data Privacy and Trustworthy Machine Learning*. IEEE S&P Magazine. 2022.

Factors Influencing Overfitting and Memorization

Curvature smoothness of the objective function

Distinguishability across (a) datasets, (b) subgroups, and (c) models

Distance of training data to decision boundary

(Objective function-related)

Size of training data

Tail length of distribution

Number of attributes

Priority of learning stable attributes

(Dataset-related)

Model capacity

(Model-related)

Guideline to Predict Unintended Interactions

Effectiveness of defense correlates with change in factor

Change in factor correlates with change in susceptibility to risk

- Identify correlations with factors for all defenses and risks
- Example:** Group Fairness vs. Data Reconstruction

Conjecture → Group fairness **reduces** data reconstruction

Group Fairness (Defense)	
Experiment Setup Train neural network on CENSUS (tabular data) for binary classification of income > \$50K	
Recon. Loss: $L_2(\text{input}, \text{recon. input})$ [lower better] Fairness: p%-rule > 80% (demographic parity)	
\downarrow (Number of input attributes)	
\uparrow (Distinguishability of outputs across subgroups)	

Positive correlation (\uparrow); Negative correlation (\downarrow)

Condition → Conjecture holds for **less attributes**

# Input Attributes	Baseline	Fair Model	For common factor, do arrows (\downarrow, \downarrow)?
			(\downarrow, \downarrow)?
10	0.85 ± 0.01	0.95 ± 0.02	No Attack less effective risk decreases with fairness
20	0.93 ± 0.03	0.93 ± 0.00	
30	0.95 ± 0.02	0.94 ± 0.00	Attack ineffective for common # attributes >10

Validating Guideline

Apply guideline to two unexplored interactions and empirically validate them

- Example 1: Group fairness decreases data reconstruction
- Example 2: Model explanations **leaks** distributional properties of training data

Validate guideline by comparing conjectures with prior work

Exceptions

- Differenc...
- Some de...

Takeaway

Unintended interactions are **important for practical deployment** and practitioners can study them using **underlying factors**

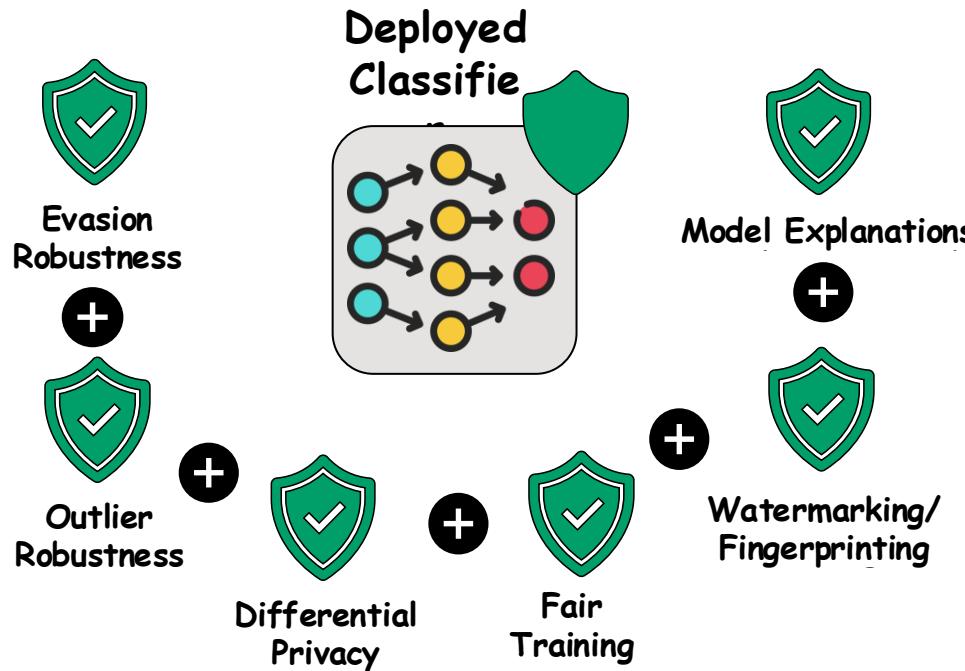
First step towards understanding interactions and further work required

Recourse for Practitioners

Tune individual factors for specific interactions
to reduce unintended increase in risks

Problem 2: Protection Against Multiple Risks

TMLR'25



Effectively combine defenses to protect against multiple risks

- Defense effectiveness before and after combination is **same**
- **Problem** → **Conflicting objectives** among defenses^[1,2,3,4]

Need principled combination technique

- **Modify existing defenses** to combine effectively
- Identify if defenses can be **combined without conflict**

[1] Szylter and Asokan. [Conflicting Interactions Among Protection Mechanisms for Machine Learning Models](#). AAAI. 2023.

[2] Fioretto et al. [Differential Privacy and Fairness in Decision and Learning Tasks: A Survey](#). IJCAI. 2022.

[3] Ferry et al. [SoK: Taming the Triangle - On the Interplays between Fairness, Interpretability and Privacy in Machine Learning](#). ArXiv. 2024.

[4] Gittens et al. [An Adversarial Perspective on Accuracy, Robustness, Fairness, and Privacy](#). IEEE Access. 2024.

Desiderata: Ideal Combination Technique

Accurate

Correctly identifies whether combination is effective or not

Scalable

Allows combining more than two defenses

Non-Invasive

Requires no changes to defenses being combining

General

Applicable to different types of defenses

Limitations of Prior Work

Optimization Techniques^[1,2]

Game-theory, regularization, constraint solving, ...

Accurate

Not Scalable

Invasive

Not General

Trade-off between
effectiveness and utility

Optimization specific
to combinations

Mutually Exclusive Placement^[3,4]

(aka naïve technique)

Defenses in different stages are non-conflicting

Not Accurate

Scalable

Non-invasive

General

Incorrect non-conflicting same-stage
and conflicting different-stage defenses

Naïve technique is promising but not accurate

Can we improve accuracy by accounting for reasons underlying conflicts?

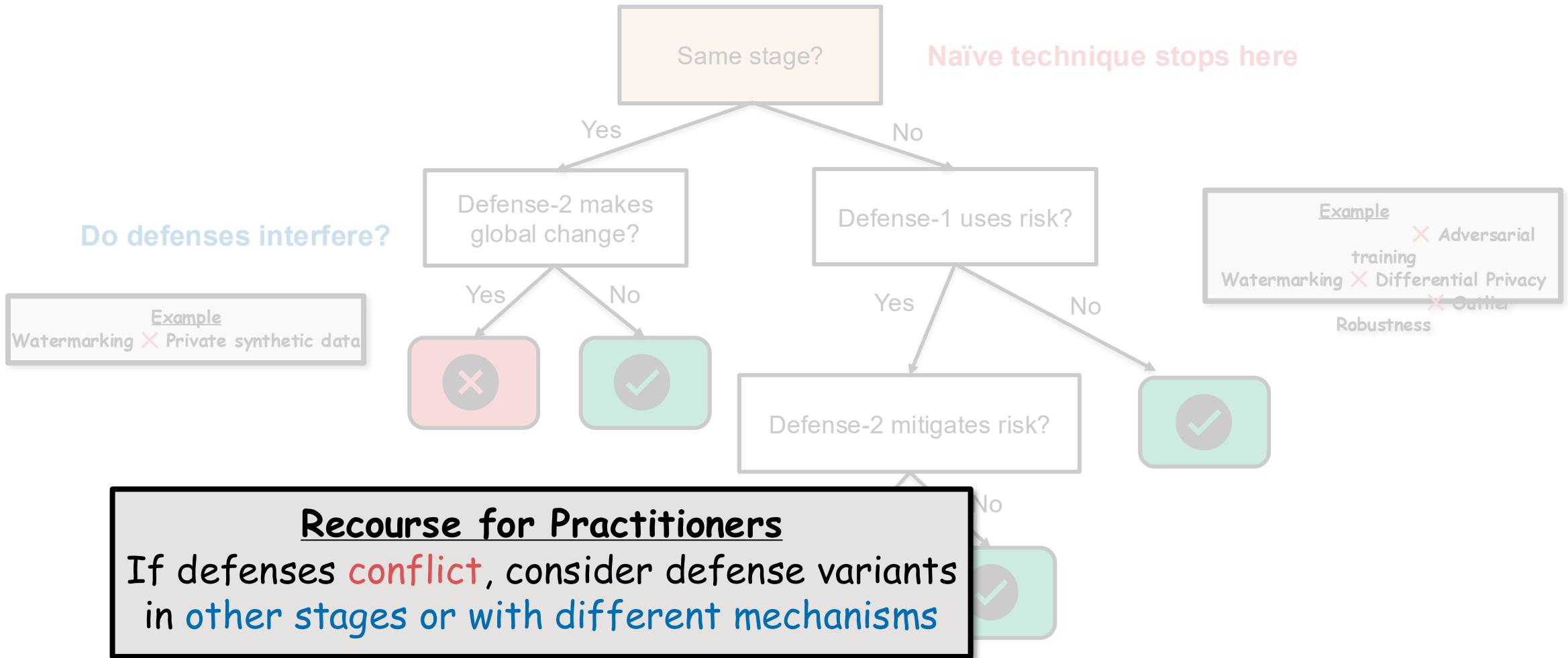
[1] Wu et al. [Augment then smooth: Reconciling differential privacy with certified robustness](#). TMLR. 2024.

[2] Tran et al. [Differentially private and fair deep learning: A Lagrangian dual approach](#). AAAI. 2021.

[3] Szyller and Asokan. [Conflicting Interactions Among Protection Mechanisms for Machine Learning Models](#). AAAI. 2023.

[4] Yaghini et al. [Learning with Impartiality to Walk on the Pareto Frontier of Fairness, Privacy and Utility](#). ArXiv. 2023.

DefCon: Design



Def\Con: Evaluation

Accuracy

Identify defense variants in different stages → 38 pairwise combinations

Eight combinations as ground truth from prior work

- Def\Con: 90% (7/8) vs. Naïve: 40% (4/8) balanced accuracy

Takeaway

Existing defenses can be effectively combined
by predicting whether defenses conflict

Used empirical ev

- Def\Con: 81% (2

truth

Scalable

Can combine more
than two defenses

Non-invasive

Not modifying
existing defenses

General

DEF\CON independent
of defenses

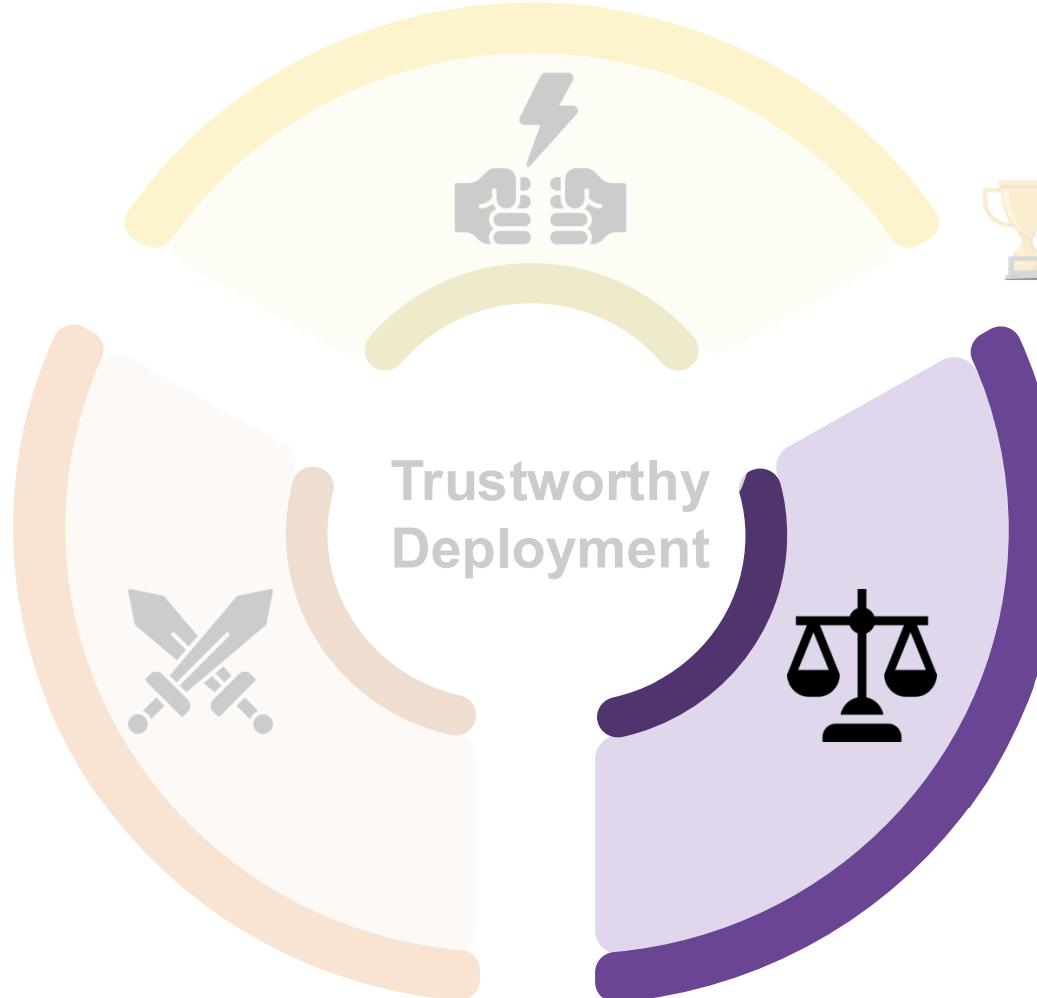
Talk Overview

Identifying and Mitigating Risks

Security, Privacy, Fairness, Transparency

MobiQuitous'20, SAC'22, S&P'24a,
CODASPY'25, ICML'25, PETS'26

Best Paper @ ACM CODASPY'25
Oral @ AAAI PPAI Workshop'25



Enabling Governance

CCS'23, ESORICS'24,
CODASPY'25, ArXiv'25b

Exploring “Meta-Concerns”

CIKM'22, WISE'24, S&P'24b,
TMLR'25, ArXiv'25a

Distinguished Paper @ IEEE S&P'24
Technology Transfer to Intel

Enabling Governance: Contributions

Technical Mechanisms to Ensure Accountability

How can we design mechanisms to attest ML properties?

ESORICS'24

CODASPY'25

Human-centered Studies to Inform Practitioners

Can user expectations and perceptions inform defenses and deployment?

CCS'23

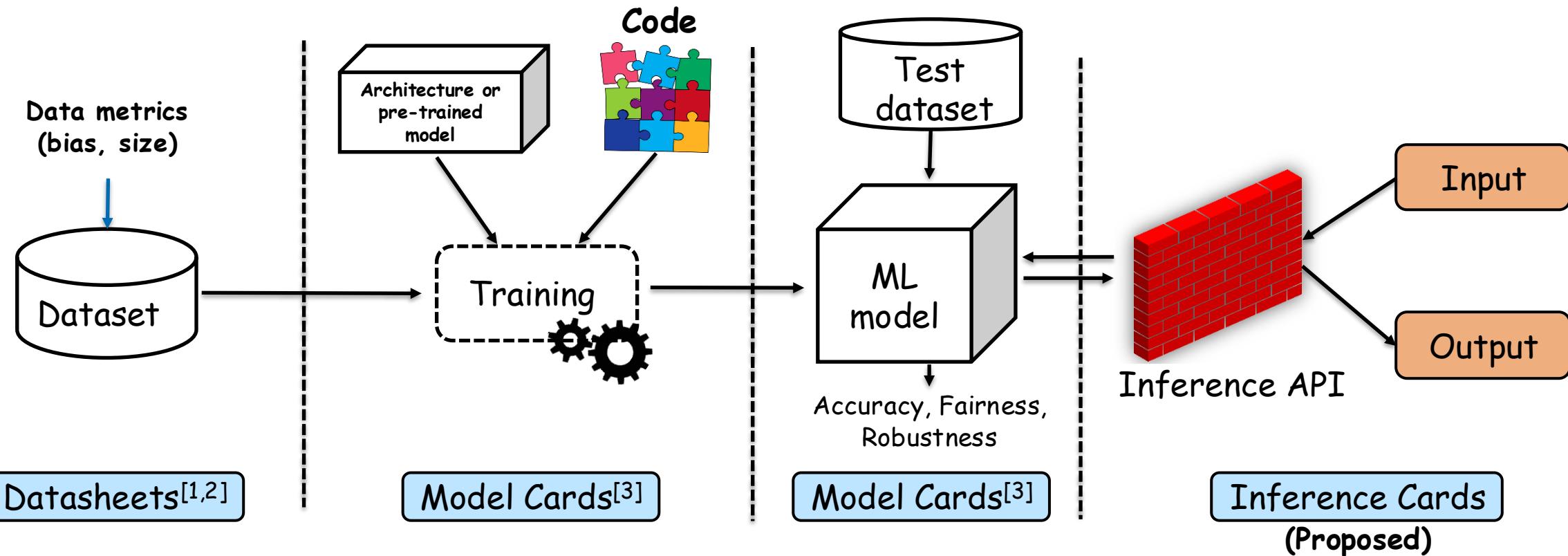
ArXiv'26

(Under submission)

Advertising ML Properties for Transparency

ESORICS'24

CODASPY'25



Collectively, refer to them as “**ML property cards**”

[1] Gebru et al. [Datasheets for datasets](#). Communications of ACM. 2021.

[2] Pushkarna et al. [Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI](#). FaccT. 2022.

[3] Mitchell et al. [Model Cards for Model Reporting](#). FaccT. 2019.

Need Verifiable ML Property Cards

Malicious prover can make **false claims** about model or data (e.g., HuggingFace^[1])

Prover (model trainer/owner) needs to **convince** Verifier about:

- Correct execution of ML operations (**accountability**)

ML property attestation^[2]

- Prover (e.g., model trainer) demonstrates properties to Verifier (e.g., regulator, customer)
- Without revealing proprietary model and training data → **Confidentiality**

[1] Mithril-Security. [*PoisonGPT: How to poison LLM supply chain on HuggingFace*](#). 2023.

[2] Duddu et al. [*Attesting Distributional Properties of Machine Learning Training Data*](#). ESORICS. 2024.

Desiderata: ML Property Attestation Mechanism

Effective

Correctly estimate ML properties

Efficient

Incur low computation overhead compared to ML operations

Versatile

Support various ML properties for training, evaluation, inference

Scalable

Attestations can be efficiently checked by multiple verifiers

Robust

Resist evasion of attestations by malicious provers

Limitations of Software-based Attestations

ML-based Attestations

Examples: Proof of learning^[1],
Re-purposing privacy attacks^[2]

Statistical techniques and ML models for auditing

Not Effective^[2]

Efficient

Versatile

Scalable

Not Robust^[2, 3, 4]

Cryptographic Attestations

Examples: Multi-party computation^[2],
Zero-knowledge proofs^[5,6]

Design protocols using cryptographic primitives

Effective

Inefficient^[2]

Not Versatile

Scalable

Robust

[1] Jia et al. *Proof of Learning: Definitions and Practice*. IEEE S&P. 2021.

[2] Duddu et al. *Attesting Distributional Properties of Machine Learning Training Data*. ESORICS. 2024.

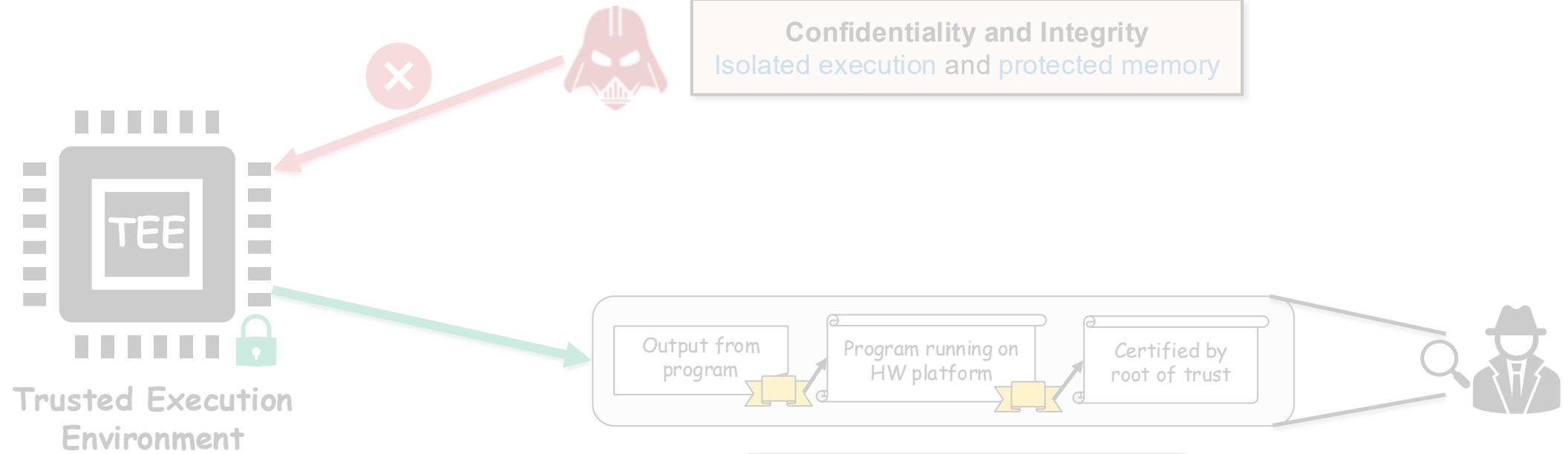
[3] Zhang et al. *“Adversarial Examples” for Proof-of-Learning*. IEEE S&P. 2022.

[4] Fang et al. *Proof of Learning is more Broken than You Think*. IEEE EuroS&P. 2023.

[5] Sun et al. *zkLLMs: Zero Knowledge Proofs for Large Language Models*. ACM CCS. 2024.

[6] Abbaszadeh et al. *Zero-Knowledge Proofs of Training for Deep Neural networks*. ACM CCS. 2024.

Hardware-assisted Attestations



Can we adapt remote attestation to efficiently^[1,2] demonstrate ML properties?

[1] Google Cloud Team. [We tested Intel's AMX CPU accelerator for AI and here's what we learned.](#) 2024.

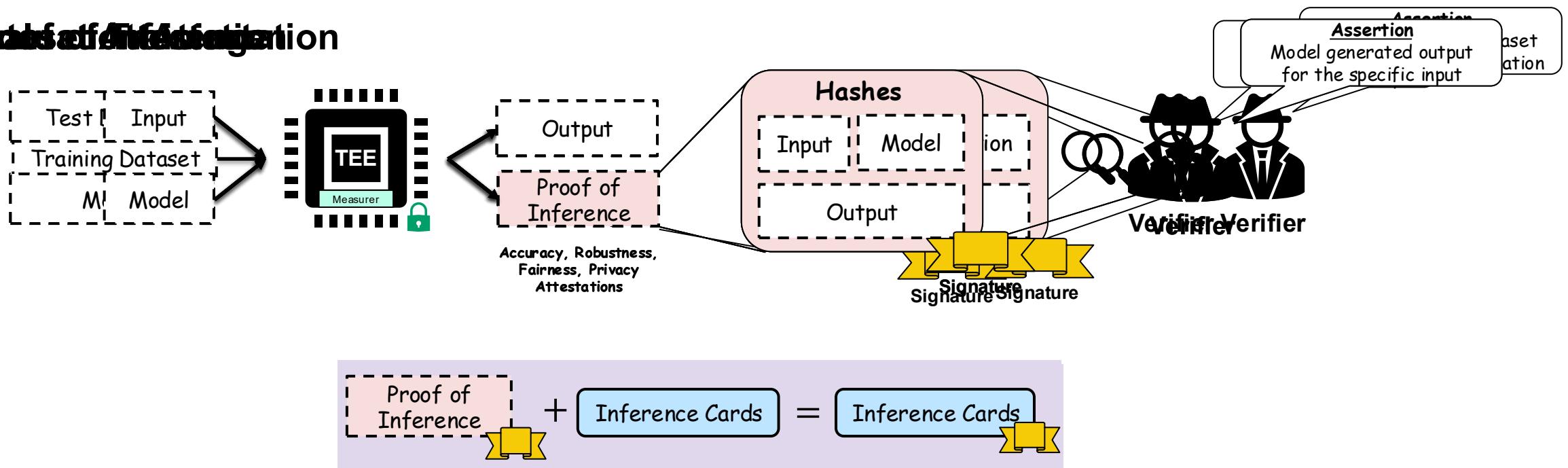
[2] Zhu et al. [Confidential Computing on Nvidia's H100 GPU: A Performance Benchmark Study](#). ArXiv. 2024.

Laminator Framework

Use TEEs to furnish ML property attestations

- **Measurer script** within TEE measures desired property

End-to-end Attestation



Laminator: Evaluation

Efficiency

Laminator incurs low overhead for attestations (<2%)

Effective

Scalable

Versatile

Robust

Measurer script correctly
measured data

Attestations can be checked

Any property specified in

Inherited from TEE's

properties

Takeaway

Hardware-assisted TEEs are promising to effectively and efficiently furnish attestations and enable accountability in ML

Laminator meets all requirements of ML pipelines to furnish verifiable ML property cards

Future Work: Trustworthy and Verifiable AI Agents

Identifying and Mitigating Risks

- Systematic evaluation of emerging risks (e.g., alignment faking)
- Revisiting **systems and network security risks and principles** in AI ecosystem

Mitigating Risks

- Applying **contextual integrity** to evaluate privacy
- Control unintended behaviors using **interpretability** and model editing

Meta- Concerns

- Robust alignment with human expectations **despite conflicts**
- Emergent misalignment (fine-tuning on narrow task → misalignment)

Enabling Governance

Extending attestations for AI ecosystem

- (Runtime) Attestations for agents
- Attestations for properties of ecosystem
- Formal verification of ecosystem components

Summary

“Meta-concerns” are important in practice while protecting against multiple risks

- Defense may increase or decrease susceptibility to other risks
- Avoiding conflicts while combining defenses

Hardware-assisted TEEs are useful for attesting ML operations

My other research on identifying and mitigating risks (not covered):

- First work to identify privacy risks in graph-based models MobiQuitous'20 >180 citations
- First fingerprinting scheme for graph-based models S&P'24
- Robust suppression of inappropriate/unauthorized outputs ArXiv'25 CODASPY'25 Best Paper
- Contextual integrity for language models ICML'25 PETS'26
- Mechanistic interpretability to reduce PII leakage EACL Findings'26