

GrOVe: Ownership Verification of Graph NNs using Embeddings

Asim Waheed, Vasisht Duddu, N. Asokan

<u>asim.waheed@uwaterloo.ca</u>, <u>vasisht.duddu@uwaterloo.ca</u> , <u>asokan@acm.org</u>

IEEE Symposium on Security and Privacy, 2024

Introduction

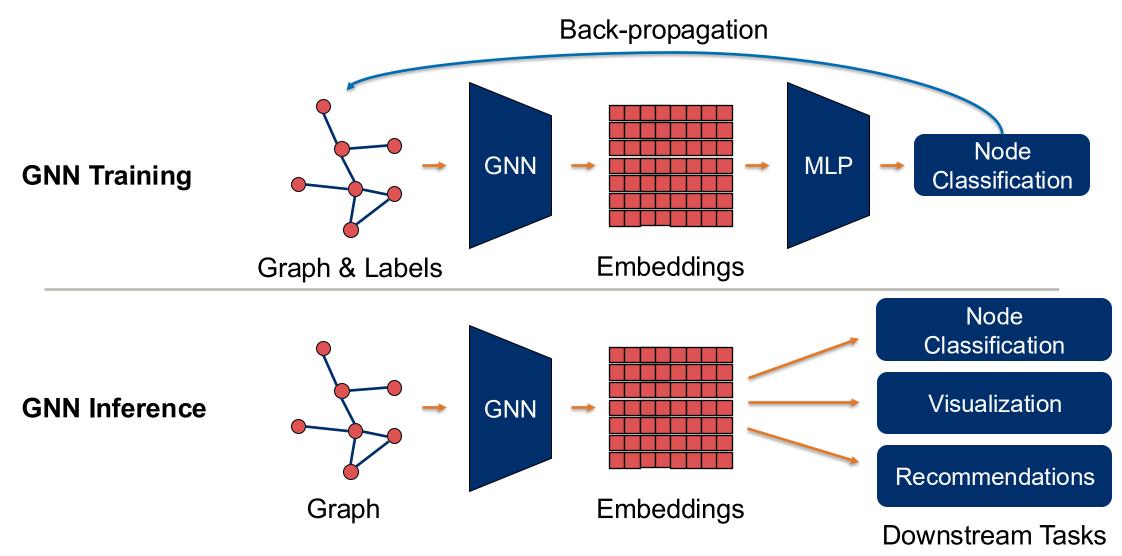
Graph NNs (GNNs) are the state-of-the-art for real-world graph-based applications

GNNs require significant resources and data to train

Prior work^[1] has shown model extraction is possible on GNNs

Need for ownership demonstration

Background: GNN Training and Inference



(How) can we design an ownership verification technique for GNNs?

Model Extraction Attacks on GNNs

Practical Setting: Model extraction for inductive GNNs^[1]

Two Attacks

- Type 1: Adversary has adjacency matrix and directly trains surrogate model
- **Type 2:** Adversary estimates adjacency matrix before training surrogate model

High accuracy on primary task
High fidelity between target and surrogate model

Ownership Verification: Desiderata

Effective

Differentiate between surrogate and independent models

Robust

Resists attempts at circumventing ownership verification (compression, fine-tuning)

Efficient

Reasonable computational overhead

Accurate

Does not degrade target model accuracy

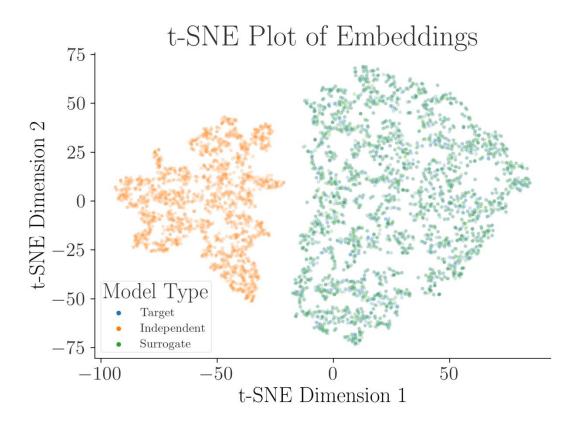
Motivation

Unique embeddings for each input graph

High-fidelity model extraction

→ embeddings from surrogate and target models are similar

Can GNN embeddings be used as a fingerprint?



Threat Model

Blackbox Adversary (same as Shen et al.)

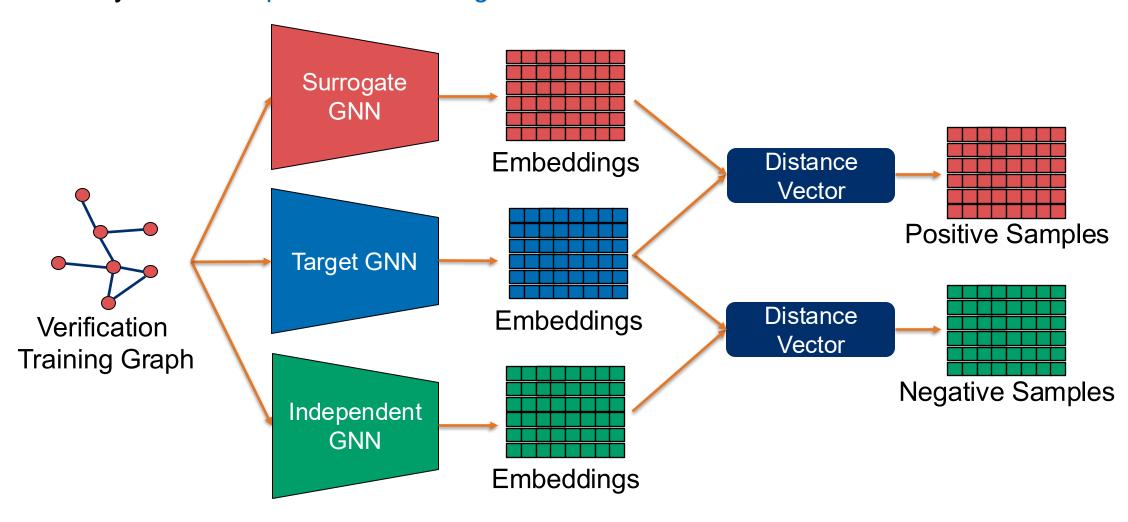
- Access to node embeddings to train surrogate model
- No overlap between surrogate and target training dataset

Ownership Verification

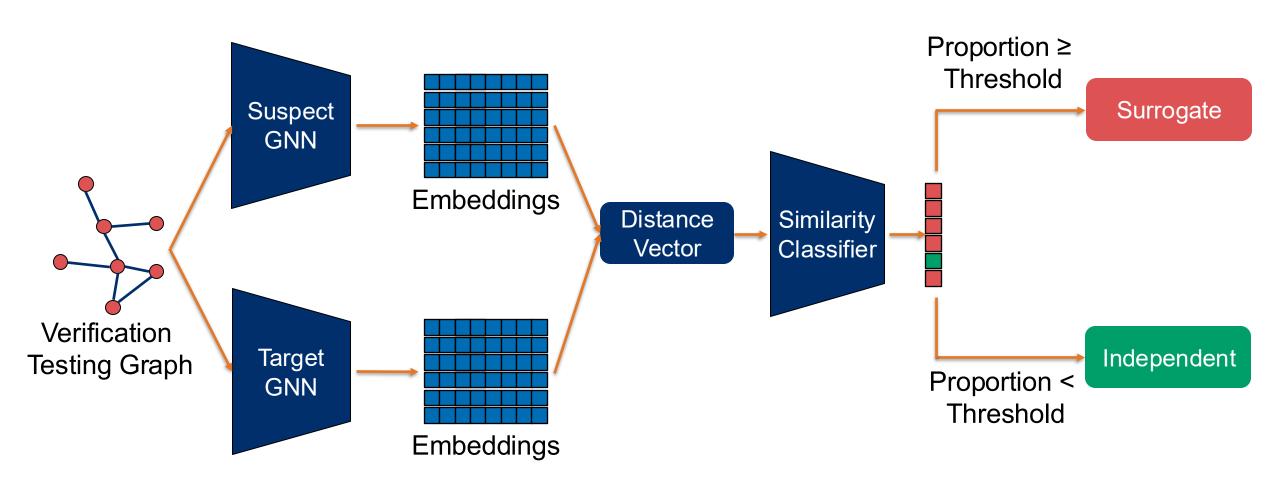
- Verifier samples verification dataset from same distribution as target model dataset
- Verifier can access target model and suspect model

Approach: Training Similarity Classifier (C_{sim})

Classify whether a pair of embeddings are close or far



Verification Steps



GroVE: Robustness

We consider only malicious suspects

Adversary can post-process surrogate models to evade detection

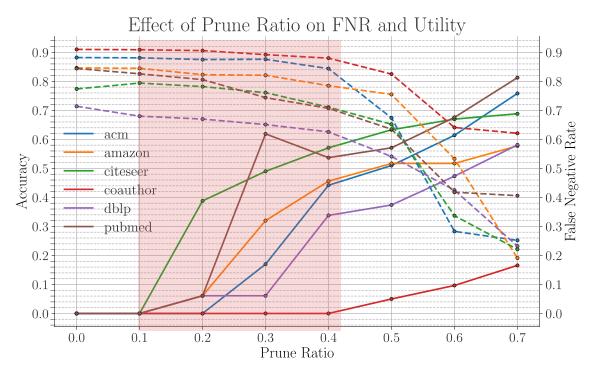
Possible post-processing techniques:

- Fine-tuning: GroVE is effective (zero FNR)
- Double Extraction: GroVE is effective (zero FNR)
- Pruning

Robustness: Pruning

Randomly remove some model weights
Changes the model's embedding distribution

Pruning successfully evades GrOVe



Adversary wins: FNR increases without accuracy drop

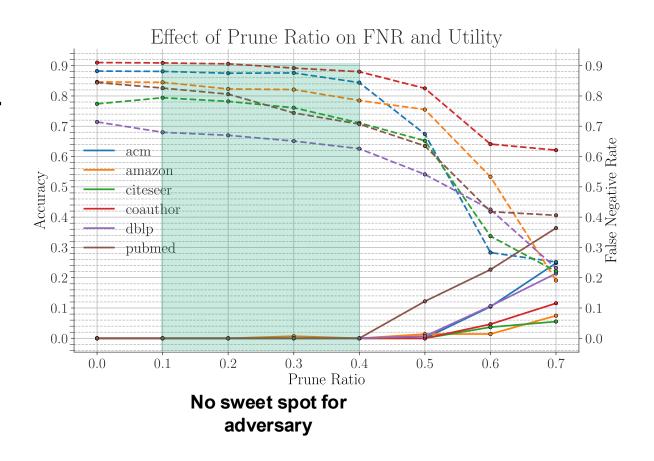
Making GrOVe Robust

Augment training data of C_{sim}

Include models with prune ratio <= 0.4 into training data

10% accuracy drop after 0.4

GrOVe after robust training correctly identifies surrogate models



Takeaways

Model extraction attacks against GNNs are a problem

Surrogate models generate similar embeddings to target model

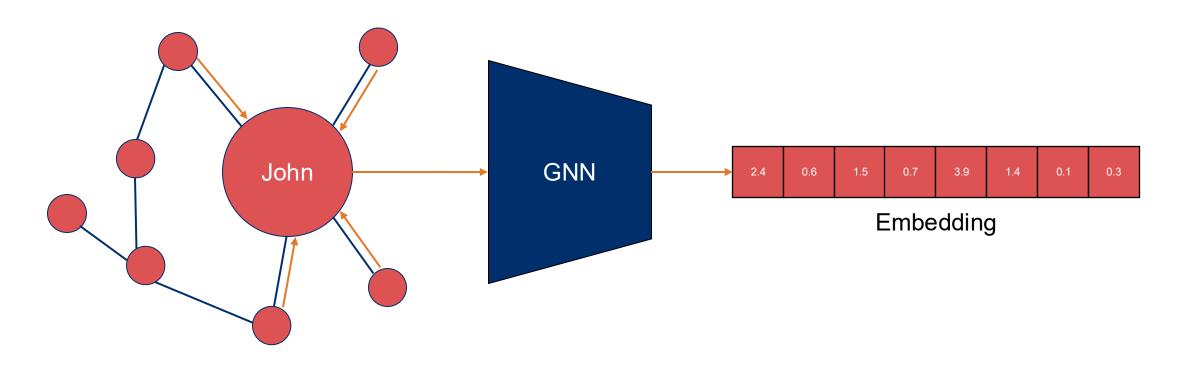
GrOVe is effective, robust, efficient, and accuracy

https://arxiv.org/abs/2304.08566

Backup

Background: GNNs

Goal: Convert node features and graph structure to an embedding



Parties involved

Model owner

Trains a model and deploys it as a service

Adversarial Responder (Adv.R)

Stole model from a model owner and wants to evade detection

Adversarial Accuser (Adv.A)

Wants to make false accusations against someone stealing their model

Third-party verifier (*Ver*)

Trusted third-party that verifies whether one model is stolen from the other

Model Registration

Goal: ensure *Ver* knows which model was trained first

Every model owner must:

- Generate cryptographic commitment (c) of their model
 - c should change if model changes (e.g., via cryptographic hash function)
- Obtain secure timestamp of c

Verification Process

Accuser claims that Responder stole their target model

Ver:

- checks that target and suspect models are consistent with registered models (including some additional checks)
- 2. checks the secured timestamps to ensure target model was trained before suspect model (preventing false accusations by $\mathcal{Adv}.\mathcal{A}$)
- 3. samples verification dataset from same distribution as target model data
- 4. queries target and suspect model and passes outputs to verification algorithm

Embeddings as Fingerprints

Goal: Use embeddings to distinguish between surrogate and independent model

Steps:

- Train two models: target and independent
- Target model extraction with non-overlapping data to get surrogate model
- Query all three models with unseen verification graphs to generate embeddings

Model combinations:

- Training datasets: surrogate different, target and independent same
- Model architectures: different vs same architectures for all three models

Experiment 1

Goal: Analyze how embeddings are affected by model architecture and training data

Steps:

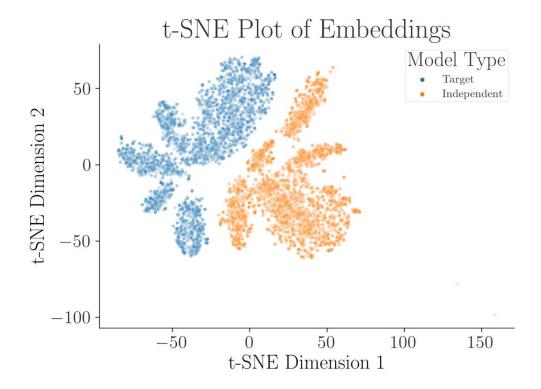
- Train two models: target and independent
- Query both with unseen verification graphs to generate embeddings
- Visualize 2D t-SNE projections of embeddings and compare distinguishability

Model combinations:

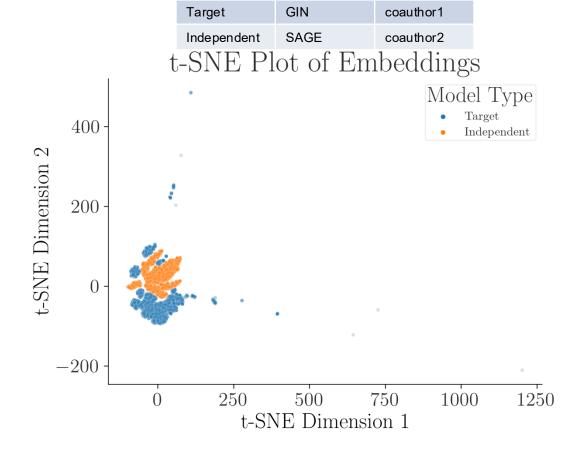
- Training datasets: different datasets of same distribution vs same dataset
 - 6 datasets: ACM, Amazon, Citeseer, Coauthor Physics, DBLP, and Pubmed
 - 10% data used for verification
- Model architectures: different vs same architectures
 - 3 architectures: Graph Attention Network (GAT), Graph Isomorphism Network (GIN), GraphSAGE (SAGE)

Experiment 1 Example Plots

	Architecture	Dataset
Target	GAT	coauthor1
Independent	GAT	coauthor2



Fully Separable



Architecture

Dataset

Partially Separable

Experiment 1 Results

In all plots; no overlap between target and independent models

Different datasets:

• 54 total pairs, 4 are partially separable, rest are fully separable

Same dataset:

• 54 total pairs, 9 are partially separable, rest are fully separable

Experiment 1 Implications

Two models independently trained will always generate different embeddings

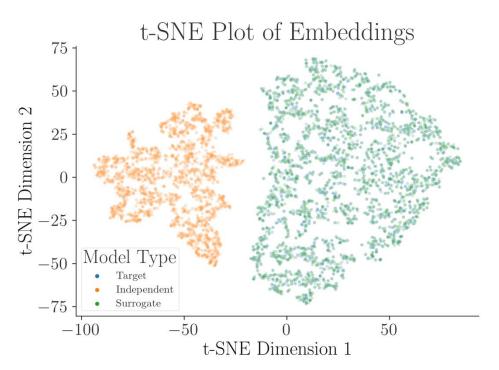
Same training data and same model architecture but different embeddings implies:

Fingerprints based on embeddings cannot be used for dataset ownership verification

Can they be used for model ownership verification (detect a surrogate model)?

Visualizing Embeddings

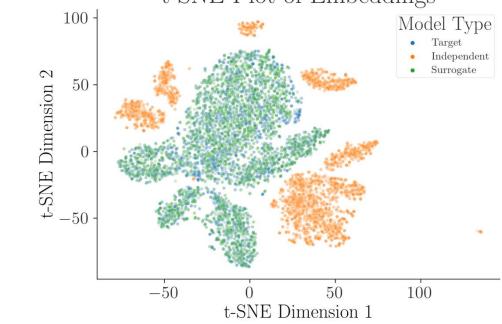
	Architecture	Dataset	
Target	GAT	pubmed1	
Independent	GIN	pubmed1	
Surrogate	GAT	pubmed2	



Fully Separable

	Architecture	Dataset	
Target	GAT	coauthor1	
Independent	GIN	coauthor1	
Surrogate	GAT	coauthor2	

t-SNE Plot of Embeddings



Partially Separable

Results

In all plots; target and surrogate model fully overlap

Independently trained model is in different space (fully separable)

Out of 30 models, in only 2 was independent model partially separable

Experimental Setup

Metrics

- Surrogate model accuracy
- False positive rate: Proportion of independent models misclassified as surrogate
- False negative rate: Proportion of surrogate models misclassified as independent

Training C_{sim}

- Type 1 model extraction attack for positive data points
- Independent models for negative data points

Testing C_{sim}

Train additional independent and surrogate models using different random initializations

Model Extraction Results

	Target	Independent	Type 1 Surrogate	Type 1 Surrogate	Type 2 Surrogate	Type 2 Surrogate
Dataset	Accuracy	Accuracy	Accuracy	Fidelity	Accuracy	Fidelity
acm	0.906 ± 0.025	0.919 ± 0.021	0.888 ± 0.019	0.931 ± 0.019	0.896 ± 0.010	0.954 ± 0.020
amazon	0.879 ± 0.064	0.876 ± 0.050	0.861 ± 0.022	0.870 ± 0.051	0.842 ± 0.007	0.848 ± 0.009
citeseer	0.804 ± 0.047	0.809 ± 0.028	0.757 ± 0.014	0.907 ± 0.041	0.796 ± 0.000	0.902 ± 0.012
coauthor	0.926 ± 0.005	0.928 ± 0.011	0.919 ± 0.019	0.949 ± 0.034	0.919 ± 0.004	0.948 ± 0.003
dblp	0.696 ± 0.028	0.693 ± 0.030	0.674 ± 0.009	0.833 ± 0.018	0.680 ± 0.008	0.851 ± 0.017
pubmed	0.846 ± 0.022	0.846 ± 0.021	0.829 ± 0.007	0.923 ± 0.016	0.832 ± 0.005	0.937 ± 0.014

Surrogate models consistent with attack paper

GroVE: Effectiveness

Dataset	FPR	Type 1 FNR	Type 2 FNR
acm	0.022 ± 0.022	0.000 ± 0.000	0.000 ± 0.000
amazon	0.034 ± 0.029	0.000 ± 0.000	0.000 ± 0.000
citeseer	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
coautho			
r	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
dblp	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
pubmed	0.002 ± 0.003	0.000 ± 0.000	0.000 ± 0.000

GrOVe is effective at verifying ownership

Robustness: Double Extraction

Adversary runs model extraction twice: against target model → intermediate model; against intermediate model → surrogate model

Intuition: Additional extraction changes the output distribution → potentially evading GrOVe

Attack Type	Dataset	Surrogate Accuracy	Fidelity	FNR	
	acm	0.843 ± 0.059	0.882 ± 0.060	0.000 ± 0.000	
	amazon	0.776 ± 0.050	0.781 ± 0.063	0.000 ± 0.000	
Tymo 1	citeseer	0.551 ± 0.140	0.627 ± 0.159	0.000 ± 0.000	
Type 1	coauthor	0.924 ± 0.005	0.947 ± 0.012	0.000 ± 0.000	
	dblp	0.686 ± 0.011	0.783 ± 0.011	0.000 ± 0.000	GrOVe is effective at
	pubmed	0.830 ± 0.007	0.912 ± 0.007	0.000 ± 0.000	verifying ownersh
Type 2	acm	0.882 ± 0.017	0.930 ± 0.020	0.000 ± 0.000	vernying ownersinp
	amazon	0.698 ± 0.216	0.695 ± 0.219	0.000 ± 0.000	
	citeseer	0.679 ± 0.064	0.736 ± 0.003 0.000 ± 0.000		
	coauthor	author 0.916 ± 0.009 0.943 ± 0.004 0.000 ± 0.000			
	dblp	0.678 ± 0.019	0.784 ± 0.036	0.000 ± 0.000	
	pubmed	0.831 ± 0.004	0.930 ± 0.005	0.000 ± 0.000	

GrOVe: Efficiency

Dataset	GAT		GIN		GraphSAGE	
	Generation	Train C _{sim}	Generation	Train C _{sim}	Generation	Train C _{sim}
acm	1184 ± 53	10562 ± 1548	1060 ± 55	10668 ± 1205	855 ± 34	10550 ± 1237
amazon	435 ± 25	3961 ± 492	418 ± 26	3845 ± 257	374 ± 25	3856 ± 288
citeseer	459 ± 30	4182 ± 462	412 ± 26	4011 ± 498	397 ± 25	3730 ± 202
coauthor	379 ± 26	3312 ± 218	361 ± 25	3273 ± 171	348 ± 21	3473 ± 323
dblp	389 ± 19	3312 ± 124	357 ± 24	3142 ± 204	349 ± 29	2970 ± 186
pubmed	334 ± 27	2985 ± 165	343 ± 27	2943 ± 223	351 ± 33	2876 ± 134

Total time to generate data and train $C_{sim} < 3$ hours

Influenced primarily by dataset size (Co-Author > DBLP > PubMed)