

SHAPr An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning

Vasisht Duddu, Sebastian Szyller, N. Asokan

vasisht.duddu@uwaterloo.ca, contact@sebszyller.com, asokan@acm.org

https://crysp.uwaterloo.ca/research/SSG/

Why measure membership privacy risk?

Regulatory requirements for privacy risk assessment

Membership inference attacks (MIAs) risk leaking sensitive data

Need a metric to estimate the likelihood of MIAs' success

Measuring membership privacy risk: desiderata

"Principled"

independent of specific MIAs ("future-proof")

Fine-grained

measure risk of individual training data records

Effective

assess susceptibility to MIAs

Efficient

reasonable computational overhead

Measuring membership privacy risk: State of the art

	Independent	Fine-grained	Effective	Efficient
MLPrivacyMeter ^[1] MLDoctor ^[2]	*	*		
Song et al. [3]	×			
Long et al. [4]				×

- [1] Murakonda et al. ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of Machine Learning. HotPETs 2020.
- [2] Liu et al. ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models. USENIX 2022.
- [3] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021.
- [4] Long et al. Towards Measuring Membership Privacy. ArXiv 2017.
- [5] Feldman. Does Learning Require Memorization? A Short Tale about a Long Tail. STOC 2020.

SHAPr: a new metric for membership privacy

Shapley Values

- Game-theoretic approach^[1] to equitably assign utility among different players
- Proposed^[2,3] for economic data valuation in data marketplaces
- Based on the leave-one-out approach

- Independent, fine-grained, effective, but not efficient?
- Once computed, useful for other applications, e.g. data valuation ("versatile")
- [1] Shapley. A Value of n-person Games. Contribution to the Theory of Games 1953.
- [2] Jia et al. Efficient Task-Specific Data Valuation for Nearest Neighbour Algorithms. VLDB 2019.
- [3] Jia et al. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? CVPR 2021.

Efficiently computing Shapley values via K-NN

^[1] Jia et al. Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms. VLDB 2019.

^[2] Jia et al. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? CVPR 2021.

Effectiveness: Susceptibility to MIAs

Ground truth: Success of Modified Entropy MIA^[1]

Baseline: Song et al's^[1] "privacy risk scores" (SPRS)

SHAPr and SPRS have comparable effectiveness

Dataset	Metric	Precision	p-value	Recall	p-value
SPRS Datasets					
LOCATION		0.96 ± 1e-16	>0.05	0.93 ± 1e-16	<0.01
		0.96 ± 0.000	7 0.03	0.85 ± 0.000	10.01
PURCHASE		0.95 ± 1e-16	>0.05	0.80 ± 0.000	<0.01
CKCHASE	SHAPR	0.95 ± 1e-16	7 0.03	0.81 ± 0.000	\\\ 0.01
TEXAS		0.92 ± 1e-16	< 0.01	0.95 ± 0.000	<0.01
		0.96 ± 1e-16		$0.74 \pm 1e-16$	\0.01
Additional Datasets					
MNIST	SPRS	0.99 ± 0.002	<0.01	0.57 ± 0.013	<0.01
	SHAPR	$0.99 \pm 8e-4$		0.94 ± 0.001	\0.01
FMNIST		0.99 ± 0.005	0.05	0.98 ± 0.026	<0.01
		0.99 ± 0.005	0.00	0.89 ± 0.026	
USPS		0.79 ± 0.201	0.84	0.76 ± 0.074	<0.01
0313	SHAPR	0.77 ± 0.230	0.01	0.98 ± 0.009	10.01
FLOWER		0.98 ± 0.010	0.81	0.81 ± 0.040	<0.01
TEO WER		0.98 ± 0.010	0.01	0.94 ± 0.008	10.01
MEPS		0.96 ± 1e-16	<0.01	0.99 ± 0.000	<0.01
	SHAPR	0.97 ± 1e-16		0.91 ± 1e-16	10.01
CREDIT		0.94 ± 0.006	< 0.01	$0.81 \pm 2e-4$	<0.01
		0.89 ± 0.004	70.01	0.92 ± 0.002	10.01
CENSUS	SPRS	0.98 ± 0.000	<0.05	1.00 ± 0.000	<0.05
	SHAPR	0.93 ± 0.000		0.84 ± 0.000	10.00

^[1] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021.

Effectiveness: Effect of Noise Addition

Ground truth: With added noise, MIA accuracy decreases for noisy data but increases for the rest

SHAPr mirrors the MIA accuracy trend SPRS does not

Comparing Distributions:

- Different records have difference influence on model performance →variable privacy risks
- Majority SPRS scores ~0.5 → inconclusive risk estimate

"Principled": Is SPRS future proof?

Simulated "future": Modified Entropy MIA^[1]

baseline from

Simulated "past": Original Entropy MIA

Recall drops drastically in the simulated "past"

SPRS likely ineffective in assessing risk of future MIAs

Dataset	Metric	Precision	Recall		
SPRS Datasets					
LOCATION	Baseline	0.96 ± 1e-16	0.93 ± 1e-16		
	Simulated	0.95 ± 1e-16	0.97 ± 1e-16		
PURCHASE	Baseline	0.95 ± 1e-16	0.80 ± 0.000		
TORCHASE	Simulated	0.99 ± 1e-16	0.50 ± 1e-16		
TEXAS	Baseline	0.92 ± 1e-16	0.95 ± 0.000		
IEAAS	Simulated	0.94 ± 6e-4	0.79 ± 0.002		
	Additional Datasets				
MNIST	Baseline	0.99 ± 0.002	0.57 ± 0.013		
	Simulated	0.99 ± 0.001	0.56 ± 0.028		
FMNIST	Baseline	0.99 ± 0.005	0.98 ± 0.026		
FMINIST	Simulated	1.0 ± 0.000	0.64 ± 0.035		
USPS	Baseline	0.79 ± 0.201	0.76 ± 0.074		
USFS	Simulated	0.86 ± 0.160	0.64 ± 0.050		
FLOWER	Baseline	0.98 ± 0.010	0.81 ± 0.040		
	Simulated	0.99 ± 0.006	0.66 ± 0.094		
MEPS	Baseline	0.96 ± 1e-16	0.99 ± 0.000		
	Simulated	0.94 ± 0.001	0.67 ± 6e-4		
CREDIT	Baseline	0.94 ± 0.006	0.81 ± 2e-4		
CKEDII	Simulated	0.79 ± 0.032	0.39 ± 0.038		
CENSUS	Baseline	0.98 ± 0.000	1.00 ± 0.000		
CENSUS	Simulated	0.99 ± 1e-16	0.28 ± 0.000		

Efficiency: Computational Overhead

Execution time: ~2 mins to ~90 mins (one-time cost)

100x faster than naïve leave-one-out approach

Dataset	# Records	# Features	Execution Time (s)		
SPRS Datasets					
LOCATION	1000	446	130.77 ± 3.90		
PURCHASE	19732	600	3065.58 ± 19.24		
TEXAS	10000	6170	5506.79 ± 17.47		
Additional Datasets					
MNIST	60000	784	2747.41 ± 22.65		
FMNIST	60000	784	3425.90 ± 34.03		
USPS	3000	256	238.67 ± 1.74		
FLOWER	1500	2048	174.27 ± 11.74		
MEPS	7500	42	732.43 ± 4.95		
CREDIT	15000	24	1852.66 ± 30.92		
CENSUS	24000	103	3718.26 ± 18.25		

Versatility

Data Valuation

- SHAPr inherits applicability to data valuation
- Other metrics without heterogeneity and additivity properties likely not applicable for data valuation

Fairness

- Different subgroups have different privacy risk
- SHAPr scores reflect trend in ground truth
 - Additivity property allows aggregation over subgroups

Gender

Pitfalls of Data Removal

No consistent trend for SHAPr scores

 Influence of other records varies, resulting in fluctuating privacy risk scores

Removing high risk records does not improve privacy

We confirm Long et al.'s[1] observation, and have

- more datasets (10 vs. 1)
- more extensive removal of data records (50% vs 2%)

Summary

SHAPr lets model builders assess membership privacy risks of individual data records

SHAPr is:

- Independent of specific MIAs
- Effective in assessing susceptibility to MIAs
- Efficient in terms of computational overhead
- Versatile (other applications like fairness, data valuation)

arXiv:2112.02230
Under review.