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Why measure membership privacy risk?

Regulatory requirements for privacy risk assessment

Membership inference attacks (MIAs) risk leaking sensitive data

Need a metric to estimate the likelihood of MIAs' success
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Measuring membership privacy risk: desiderata

“Principled”

independent of specific MIAs (“future-proof”)

Fine-grained

measure risk of individual training data records

Effective

assess susceptibility to MIAs

Efficient

reasonable computational overhead
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Measuring membership privacy risk: State of the art
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Independent Fine-grained Effective Efficient

MLPrivacyMeter[1]

MLDoctor [2]

Song et al. [3]

Long et al. [4]

[1] Murakonda et al. ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of Machine Learning. HotPETs 2020.

[2] Liu et al. ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models. USENIX 2022.
[3] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021.
[4] Long et al. Towards Measuring Membership Privacy. ArXiv 2017.

[5] Feldman. Does Learning Require Memorization? A Short Tale about a Long Tail. STOC 2020.



5

SHAPr: a new metric for membership privacy

Shapley Values

• Game-theoretic approach[1] to equitably assign utility among different players

• Proposed[2,3] for economic data valuation in data marketplaces

• Based on the leave-one-out approach

• Independent, fine-grained, effective, but not efficient?

• Once computed, useful for other applications, e.g. data valuation (“versatile”)

[1] Shapley. A Value of n-person Games. Contribution to the Theory of Games 1953.

[2] Jia et al. Efficient Task-Specific Data Valuation for Nearest Neighbour Algorithms. VLDB 2019.
[3] Jia et al. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? CVPR 2021.
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Efficiently computing Shapley values via K-NN

[1] Jia et al. Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms. VLDB 2019.

[2] Jia et al. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? CVPR 2021.
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Label xtest: 

Sort training records based on distance from F(xtest)

Assign majority label from the top K records to xtest

Score contribution of xi for 

correctly labelling xtest based 

on distance to nearest 

neighbor of xtest.
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Φ(x3)

Φ(x4)

Sum across columns to get final SHAPr

score for each training data record
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Effectiveness: Susceptibility to MIAs

Ground truth: Success of Modified Entropy MIA [1]

Baseline: Song et al’s[1] “privacy risk scores” (SPRS)

SHAPr and SPRS have comparable effectiveness

[1] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021.



8

Effectiveness: Effect of  Noise Addition

Comparing Distributions:

• Different records have difference influence on model 

performance →variable privacy risks

• Majority SPRS scores ~0.5 → inconclusive risk estimate

Ground truth: With added noise, MIA accuracy 

decreases for noisy data but increases for the rest

SHAPr mirrors the MIA accuracy trend

SPRS does not
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“Principled”: Is SPRS future proof?

Simulated “future”: Modified Entropy MIA[1] 

baseline from 

Simulated “past”: Original Entropy MIA

Recall drops drastically in the simulated “past”

SPRS likely ineffective in assessing risk of future MIAs

[1] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021.
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Efficiency: Computational Overhead

Execution time: ~2 mins to ~90 mins (one-time cost)

100x faster than naïve leave-one-out approach
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Versatility

Fairness

• Different subgroups have different privacy risk

• SHAPr scores reflect trend in ground truth

• Additivity property allows aggregation over subgroups

Data Valuation

• SHAPr inherits applicability to data valuation

• Other metrics without heterogeneity and additivity 

properties likely not applicable for data valuation

Race

Gender
[1] Kulynych et al. Disparate Vulnerability to Membership Inference Attacks. PETS 2022.
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Pitfalls of Data Removal

No consistent trend for SHAPr scores

• Influence of other records varies, resulting in fluctuating privacy 

risk scores

Removing high risk records does not improve privacy

We confirm Long et al.’s[1] observation, and have

• more datasets (10 vs. 1) 

• more extensive removal of data records (50% vs 2%)

[1] Long et al. Towards Measuring Membership Privacy. ArXiv 2017.
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Summary

SHAPr lets model builders assess membership privacy risks of individual data records

SHAPr is:

• Independent of specific MIAs

• Effective in assessing susceptibility to MIAs

• Efficient in terms of computational overhead

• Versatile (other applications like fairness, data valuation)

arXiv:2112.02230

Under review.

https://arxiv.org/abs/2112.02230
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