SHAPr An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning Vasisht Duddu, Sebastian Szyller, N. Asokan vasisht.duddu@uwaterloo.ca, contact@sebszyller.com, asokan@acm.org https://crysp.uwaterloo.ca/research/SSG/ # Why measure membership privacy risk? Regulatory requirements for privacy risk assessment Membership inference attacks (MIAs) risk leaking sensitive data Need a metric to estimate the likelihood of MIAs' success # Measuring membership privacy risk: desiderata ## "Principled" independent of specific MIAs ("future-proof") ## **Fine-grained** measure risk of individual training data records #### **Effective** assess susceptibility to MIAs #### **Efficient** reasonable computational overhead # Measuring membership privacy risk: State of the art | | Independent | Fine-grained | Effective | Efficient | |---|-------------|--------------|-----------|-----------| | MLPrivacyMeter ^[1] MLDoctor ^[2] | * | * | | | | Song et al. [3] | × | | | | | Long et al. [4] | | | | × | - [1] Murakonda et al. ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of Machine Learning. HotPETs 2020. - [2] Liu et al. ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models. USENIX 2022. - [3] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021. - [4] Long et al. Towards Measuring Membership Privacy. ArXiv 2017. - [5] Feldman. Does Learning Require Memorization? A Short Tale about a Long Tail. STOC 2020. ## SHAPr: a new metric for membership privacy #### **Shapley Values** - Game-theoretic approach^[1] to equitably assign utility among different players - Proposed^[2,3] for economic data valuation in data marketplaces - Based on the leave-one-out approach - Independent, fine-grained, effective, but not efficient? - Once computed, useful for other applications, e.g. data valuation ("versatile") - [1] Shapley. A Value of n-person Games. Contribution to the Theory of Games 1953. - [2] Jia et al. Efficient Task-Specific Data Valuation for Nearest Neighbour Algorithms. VLDB 2019. - [3] Jia et al. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? CVPR 2021. # Efficiently computing Shapley values via K-NN ^[1] Jia et al. Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms. VLDB 2019. ^[2] Jia et al. Scalability vs. Utility: Do We Have to Sacrifice One for the Other in Data Importance Quantification? CVPR 2021. ## **Effectiveness: Susceptibility to MIAs** **Ground truth:** Success of Modified Entropy MIA^[1] **Baseline:** Song et al's^[1] "privacy risk scores" (SPRS) SHAPr and SPRS have comparable effectiveness | Dataset | Metric | Precision | p-value | Recall | p-value | |---------------------|--------|------------------|---------|------------------|----------| | SPRS Datasets | | | | | | | LOCATION | | 0.96 ± 1e-16 | >0.05 | 0.93 ± 1e-16 | <0.01 | | | | 0.96 ± 0.000 | 7 0.03 | 0.85 ± 0.000 | 10.01 | | PURCHASE | | 0.95 ± 1e-16 | >0.05 | 0.80 ± 0.000 | <0.01 | | CKCHASE | SHAPR | 0.95 ± 1e-16 | 7 0.03 | 0.81 ± 0.000 | \\\ 0.01 | | TEXAS | | 0.92 ± 1e-16 | < 0.01 | 0.95 ± 0.000 | <0.01 | | | | 0.96 ± 1e-16 | | $0.74 \pm 1e-16$ | \0.01 | | Additional Datasets | | | | | | | MNIST | SPRS | 0.99 ± 0.002 | <0.01 | 0.57 ± 0.013 | <0.01 | | | SHAPR | $0.99 \pm 8e-4$ | | 0.94 ± 0.001 | \0.01 | | FMNIST | | 0.99 ± 0.005 | 0.05 | 0.98 ± 0.026 | <0.01 | | | | 0.99 ± 0.005 | 0.00 | 0.89 ± 0.026 | | | USPS | | 0.79 ± 0.201 | 0.84 | 0.76 ± 0.074 | <0.01 | | 0313 | SHAPR | 0.77 ± 0.230 | 0.01 | 0.98 ± 0.009 | 10.01 | | FLOWER | | 0.98 ± 0.010 | 0.81 | 0.81 ± 0.040 | <0.01 | | TEO WER | | 0.98 ± 0.010 | 0.01 | 0.94 ± 0.008 | 10.01 | | MEPS | | 0.96 ± 1e-16 | <0.01 | 0.99 ± 0.000 | <0.01 | | | SHAPR | 0.97 ± 1e-16 | | 0.91 ± 1e-16 | 10.01 | | CREDIT | | 0.94 ± 0.006 | < 0.01 | $0.81 \pm 2e-4$ | <0.01 | | | | 0.89 ± 0.004 | 70.01 | 0.92 ± 0.002 | 10.01 | | CENSUS | SPRS | 0.98 ± 0.000 | <0.05 | 1.00 ± 0.000 | <0.05 | | | SHAPR | 0.93 ± 0.000 | | 0.84 ± 0.000 | 10.00 | ^[1] Song et al. Systematic Evaluation of Privacy Risks in Machine Learning. USENIX 2021. ## **Effectiveness: Effect of Noise Addition** **Ground truth**: With added noise, MIA accuracy decreases for noisy data but increases for the rest SHAPr mirrors the MIA accuracy trend SPRS does not ## **Comparing Distributions:** - Different records have difference influence on model performance →variable privacy risks - Majority SPRS scores ~0.5 → inconclusive risk estimate ## "Principled": Is SPRS future proof? Simulated "future": Modified Entropy MIA^[1] baseline from Simulated "past": Original Entropy MIA Recall drops drastically in the simulated "past" SPRS likely ineffective in assessing risk of future MIAs | Dataset | Metric | Precision | Recall | | | |---------------|---------------------|------------------|------------------|--|--| | SPRS Datasets | | | | | | | LOCATION | Baseline | 0.96 ± 1e-16 | 0.93 ± 1e-16 | | | | | Simulated | 0.95 ± 1e-16 | 0.97 ± 1e-16 | | | | PURCHASE | Baseline | 0.95 ± 1e-16 | 0.80 ± 0.000 | | | | TORCHASE | Simulated | 0.99 ± 1e-16 | 0.50 ± 1e-16 | | | | TEXAS | Baseline | 0.92 ± 1e-16 | 0.95 ± 0.000 | | | | IEAAS | Simulated | 0.94 ± 6e-4 | 0.79 ± 0.002 | | | | | Additional Datasets | | | | | | MNIST | Baseline | 0.99 ± 0.002 | 0.57 ± 0.013 | | | | | Simulated | 0.99 ± 0.001 | 0.56 ± 0.028 | | | | FMNIST | Baseline | 0.99 ± 0.005 | 0.98 ± 0.026 | | | | FMINIST | Simulated | 1.0 ± 0.000 | 0.64 ± 0.035 | | | | USPS | Baseline | 0.79 ± 0.201 | 0.76 ± 0.074 | | | | USFS | Simulated | 0.86 ± 0.160 | 0.64 ± 0.050 | | | | FLOWER | Baseline | 0.98 ± 0.010 | 0.81 ± 0.040 | | | | | Simulated | 0.99 ± 0.006 | 0.66 ± 0.094 | | | | MEPS | Baseline | 0.96 ± 1e-16 | 0.99 ± 0.000 | | | | | Simulated | 0.94 ± 0.001 | 0.67 ± 6e-4 | | | | CREDIT | Baseline | 0.94 ± 0.006 | 0.81 ± 2e-4 | | | | CKEDII | Simulated | 0.79 ± 0.032 | 0.39 ± 0.038 | | | | CENSUS | Baseline | 0.98 ± 0.000 | 1.00 ± 0.000 | | | | CENSUS | Simulated | 0.99 ± 1e-16 | 0.28 ± 0.000 | | | # **Efficiency: Computational Overhead** **Execution time:** ~2 mins to ~90 mins (one-time cost) 100x faster than naïve leave-one-out approach | Dataset | # Records | # Features | Execution Time (s) | | | |---------------------|-----------|------------|---------------------|--|--| | SPRS Datasets | | | | | | | LOCATION | 1000 | 446 | 130.77 ± 3.90 | | | | PURCHASE | 19732 | 600 | 3065.58 ± 19.24 | | | | TEXAS | 10000 | 6170 | 5506.79 ± 17.47 | | | | Additional Datasets | | | | | | | MNIST | 60000 | 784 | 2747.41 ± 22.65 | | | | FMNIST | 60000 | 784 | 3425.90 ± 34.03 | | | | USPS | 3000 | 256 | 238.67 ± 1.74 | | | | FLOWER | 1500 | 2048 | 174.27 ± 11.74 | | | | MEPS | 7500 | 42 | 732.43 ± 4.95 | | | | CREDIT | 15000 | 24 | 1852.66 ± 30.92 | | | | CENSUS | 24000 | 103 | 3718.26 ± 18.25 | | | ## **Versatility** #### **Data Valuation** - SHAPr inherits applicability to data valuation - Other metrics without heterogeneity and additivity properties likely not applicable for data valuation #### **Fairness** - Different subgroups have different privacy risk - SHAPr scores reflect trend in ground truth - Additivity property allows aggregation over subgroups Gender ## **Pitfalls of Data Removal** #### No consistent trend for SHAPr scores Influence of other records varies, resulting in fluctuating privacy risk scores ## Removing high risk records does not improve privacy We confirm Long et al.'s[1] observation, and have - more datasets (10 vs. 1) - more extensive removal of data records (50% vs 2%) ## **Summary** ## SHAPr lets model builders assess membership privacy risks of individual data records #### **SHAPr** is: - Independent of specific MIAs - Effective in assessing susceptibility to MIAs - Efficient in terms of computational overhead - Versatile (other applications like fairness, data valuation) arXiv:2112.02230 Under review.