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Machine Learning works…..

Criminal 

Recidivism
Healthcare

Mortgage 

Applications

Autonomous 

Vehicles

…..and many more

…..and being considered for applications with high-stakes decision-making

Images generated by ChatGPT

But, susceptible to various security, privacy, and fairness risks
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Risks to ML Systems

Evasion: Force model to misclassify perturbed input[1]

Poisoning: Add poisons to degrade utility or generate adversary-chosen output[2]

Unauthorized Model Ownership: Steal functionality of target model[3]

Unauthorized Data Usage: Use of copyrighted or personal data without consent[4]

(Fairness Risks)

(Privacy Risks)

(Security Risks)

Inference Attacks: Infer unobservable “sensitive” information from model[5]

Bias: Different behavior on different demographic subgroups [6]

Incomprehensible: Unclear why model gave specific output[7]

[1] Crocce and Hein. Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-Free Attacks. ICML 2020

[2] Wenger et al. Backdoor Attacks against Deep Learning Systems in the Physical World. CVPR 2021.

[3] Orekondy et al. Knockoff-Nets: Stealing Functionality of Black-Box Models. CVPR 2019.

[4] New York Times. The Times Sues OpenAI and Microsoft over AI Use of Copyrighted Work. 2023.

[5] Rigaki and Garcia. A Survey of Privacy Attacks in Machine Learning. ACM Computing Surveys. 2023.
[6] Hardt et al. Equality of Opportunity in Supervised Learning. NeurIPS. 2016.

[7] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS 2017.

https://proceedings.mlr.press/v119/croce20b/croce20b.pdf
https://proceedings.mlr.press/v119/croce20b/croce20b.pdf
https://proceedings.mlr.press/v119/croce20b/croce20b.pdf
https://openaccess.thecvf.com/content/CVPR2021/html/Wenger_Backdoor_Attacks_Against_Deep_Learning_Systems_in_the_Physical_World_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wenger_Backdoor_Attacks_Against_Deep_Learning_Systems_in_the_Physical_World_CVPR_2021_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://dl.acm.org/doi/full/10.1145/3624010
https://dl.acm.org/doi/10.5555/3157382.3157469
https://dl.acm.org/doi/10.5555/3295222.3295230
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Defenses against ML Risks

Evasion: Adversarial training[1]

Poisoning: Data Sanitization[2], Fine-tune[3], Pruning[4]

Unauthorized Model Ownership: Watermarking[5,6] and Fingerprinting[7]

Unauthorized Data Usage: Watermarking[8]

(Fairness Risks)

(Privacy Risks)

(Security Risks)

Inference Attacks: Differential Privacy (Synthetic Data[9], DPSGD[10])

Bias: Synthetic Data[11], Regularization[12], Calibration[13]

Incomprehensible: Model explanations[14]

[1] Madry et al. Towards Deep Learning Models Resistant to Adversarial Attacks. ICML 2018

[2] Borgnia et al. Strong Data Augmentation Sanitizes Poisoning and Backdoors Attacks without an Accuracy Trade-off. ICASSP 2021.

[3] Patrini et al. Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach. CVPR 2017.

[4] Li et al. Reconstructive Neuron Pruning for Backdoor Defense. ICML 2023.

[5] Adi et al. Tuning your Weakness into a Strength: Watermarking Deep Neural Networks by Backdoors. USENIX Sec 2018.
[6] Szyller et al. DAWN: Dynamic Adversarial Watermarking of Neural Networks. ACM MM. 2021.

[7] Waheed et al. GrOVe: Ownership Verification of Graph Neural Networks using Embeddings. IEEE S&P 2024. (Our work)

[8] Chen et al. Catch Me if You Can: Detecting Unauthorized Data Use In Training Deep Learning Models. CCS 2024.

[9] Lin et al. Differentially Private Synthetic Data via Foundation Model APIs 1: Images. ICLR 2024.

[10] Abadi et al. Deep Learning with Differential Privacy. CCS 2016.
[11] Zemel et al. Learning Fair Representations. ICML 2013.

[12] Hardt et al. Equality of Opportunity in Supervised Learning. NeurIPS 2016.

[13] Pleiss et al. On Fairness and Calibration. NeurIPS 2017.

[14] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS 2017

Not Enough to Design Effective Defenses 

against Individual Risks

https://openreview.net/forum?id=rJzIBfZAb
https://ieeexplore.ieee.org/abstract/document/9414862
https://ieeexplore.ieee.org/abstract/document/9414862
https://ieeexplore.ieee.org/abstract/document/9414862
https://ieeexplore.ieee.org/document/8099723
https://dl.acm.org/doi/10.5555/3618408.3619227
https://dl.acm.org/doi/10.5555/3277203.3277324
https://dl.acm.org/doi/10.1145/3474085.3475591
https://ieeexplore.ieee.org/document/10646643
https://dl.acm.org/doi/10.1145/3658644.3690858
https://openreview.net/forum?id=YEhQs8POIo
https://dl.acm.org/doi/10.1145/2976749.2978318
https://proceedings.mlr.press/v28/zemel13.html
https://dl.acm.org/doi/10.5555/3157382.3157469
https://papers.nips.cc/paper_files/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html
https://dl.acm.org/doi/10.5555/3295222.3295230
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AI Regulations

Practitioners should:

(1) Ensure models satisfy all desirable ML properties (e.g., security, privacy, and fairness)  

(2) Demonstrate compliance with the regulations

AI Bill of Rights (White House) European Union’s AI Act

“Establish a risk management system”….
“conduct data governance”….”appropriate 

levels of accuracy, robustness”

“Safe and effective systems”…. “algorithmic 
discrimination protections”….”data 

privacy”….”Notice and explanations"
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Talk Outline

“Meta Concerns” for Building Trust in ML Systems

• What are the unintended implications of applying defenses? 

• How can we protect against multiple risks simultaneously?

• How can we design efficient mechanisms to demonstrate ML properties?
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Unintended Interactions among Defenses and Risks

Effective defense may increase or decrease susceptibility to other (unrelated) risks

• Adversarial training may increase susceptibility to membership inference[1]

Limited evaluation for some risks, defenses, interactions[2,3,4] or underlying causes[2,3]

No systematic framework to explore unintended interactions

[1] Song et al. Privacy Risks of Securing Machine Learning Models against Adversarial Examples. CCS 2019.

[2] Ferry et al. SoK: Taming the Triangle - On the Interplays between Fairness, Interpretability and Privacy in Machine Learning. arXiv 2024. 

[3] Gittens et al. An Adversarial Perspective on Accuracy, Robustness, Fairness, and Privacy: Multilateral-Tradeoffs in Trustworthy ML. IEEE Access 2024. 

[4] Strobel and Shokri. Data Privacy and Trustworthy Machine Learning. IEEE S&P Magazine 2022. 

https://dl.acm.org/doi/abs/10.1145/3319535.3354211
https://arxiv.org/abs/2312.16191
https://arxiv.org/abs/2312.16191
https://arxiv.org/abs/2312.16191
https://ieeexplore.ieee.org/document/9933776
https://ieeexplore.ieee.org/document/9933776
https://ieeexplore.ieee.org/document/9933776
https://ieeexplore.ieee.org/document/9802763
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Overview of Unintended Interactions
Explore pairwise interactions between each defense and all unrelated risks:

Overfitting and memorization are underlying causes (conjecture)

• Effective defenses may induce, reduce or rely on overfitting or memorization

• Risks tend to exploit overfitting or memorization

Defenses Risks

RD1 (Adversarial Training) 

RD2 (Outlier Removal​)

R1 (Evasion)

R2 (Poisoning)

RD3 (Watermarking)

RD4 (​Fingerprinting)

R3 (Unauthorized Ownership)

PD1 (Differential Privacy) P1 (Membership Inference) 

P2 (Data Reconstruction)

P3 (Attribute Inference)

P4 (Distribution Inference)

FD1 (Group Fairness)

FD2 (Explanations)

F (Discriminatory Behaviour)

?

?

?
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Factors Influencing Overfitting and Memorization

O1 Curvature smoothness of the objective function

O2 Distinguishability across datasets (O2.1), subgroups (O2.2), and models (O2.3)

O3 Distance of training data to decision boundary

D1 Size of training data

D2 Tail length of distribution

D3 Number of attributes

D4 Priority of learning stable attributes

M1 Model capacity
(Model-related)

(Dataset-related)

(Objective function-related)
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Situating Prior Work in our Framework

Risk increases (●) or decreases (●) or unexplored (●) when a defense is effective

Evaluate the influence of factors empirically (●), theoretically (ʘ), conjectured (● )
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Revisiting ML Risks and Defenses

Effectiveness of defense <d> correlates with a change in factor <f>

Change in <f> correlates with change in susceptibility to risk <r> 

• ↑: positive correlation; ↓: negative correlation
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Guideline to Conjecture Unintended Interactions

For defense <d>, risk <r> and common factor <f>, use pair of arrows that describe 

how <d> and <r> correspond to <f>

Conjectured interaction for a given <f>:

• If arrows align (↑,↑) or (↓,↓) ➞ <r> increases when <d> is effective (●)

• Else for (↑,↓) or (↓,↑) ➞ <r> decreases when <d> is effective (●)

Conjectured overall interaction: consider conjectures from all <f>s:

• If all <f> agree, then conjectured overall interaction is unanimous

• Otherwise, prioritize conjecture from dominant <f> (dominance may depend on attack)

• Value of a non-common factor may affect overall interaction 
Dominant factors
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Group Fairness (FD1) vs. Data Reconstruction (P2)

Conjectured Interaction from common factor:

O2.2 Distinguishability across subgroups: FD1 ↓, P2 ↑ (➞●)

Non-common factor: D3 # Attributes -- risk may decrease with D3

Empirical Evidence

Fair model ➞ lower attack success (confirms ●) 

• Lowers distinguishability across subgroups

Non-common factor D3

# attributes = 10: 

• Fair model ➞ lower attack success

# attributes > 10: 

• Fair model ➞ no change in attack success

(note: # attributes do not affect accuracy drop caused by fairness)

Metric Baseline Fair Model

Accuracy 84.40 ± 0.09 77.96 ± 0.58

Recon. Loss 0.85 ± 0.01 0.95 ± 0.02

#Attributes Baseline Fair Model

Recon. Loss Accuracy Recon. Loss Accuracy

10 0.85 ± 0.01 84.40 ± 0.09 0.95 ± 0.02 78.96 ± 0.58

20 0.93 ± 0.03 84.72 ± 0.22 0.93 ± 0.00 80.32 ± 1.12

30 0.95 ± 0.02 84.41 ± 0.39 0.94 ± 0.00 79.50 ±0.91
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Summary

Unintended interactions are an important “meta concern”

Common influencing factors can help identify such interactions

Need defenses to protect against multiple risks

[1] Duddu et al. SoK: Unintended Interactions among Machine Learning Defenses and Risks. IEEE S&P. 2024. Distinguished Paper Award

https://arxiv.org/abs/2312.04542
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Talk Outline

“Meta Concerns” for Building Trust in ML Systems

• What are the unintended implications of applying defenses? 

• How can we protect against multiple risks simultaneously?

• How can we design efficient mechanisms to demonstrate ML properties?
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Protecting Against Multiple Risks

Can we combine defenses?

• Effective Combination: No significant drop in effectiveness of constituent defenses

Conflicting Interactions may degrade effectiveness of individual defenses

• Watermarking vs. adversarial training or differential privacy[1]

• ……. many other conflicts[2,3,4]

Need principled combination technique

• Modify existing defenses to combine effectively

• Identify if existing defenses can be combined without modification

[1] S.Szyller, N. Asokan. Conflicting Interactions Among Protection Mechanisms for Machine Learning Models . AAAI 2023. 

[2] Fioretto et al. Differential Privacy and Fairness in Decision and Learning Tasks: A Survey. IJCAI 2022. 

[3] Ferry et al. SoK: Taming the Triangle - On the Interplays between Fairness, Interpretability and Privacy in Machine Learning. arXiv 2024. 

[4] Gittens et al. An Adversarial Perspective on Accuracy, Robustness, Fairness, and Privacy: Multilateral-Tradeoffs in Trustworthy ML. IEEE Access 2024.

https://arxiv.org/abs/2207.01991
https://arxiv.org/abs/2202.08187
https://arxiv.org/abs/2312.16191
https://arxiv.org/abs/2312.16191
https://arxiv.org/abs/2312.16191
https://ieeexplore.ieee.org/document/9933776
https://ieeexplore.ieee.org/document/9933776
https://ieeexplore.ieee.org/document/9933776
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Desiderata for Ideal Combination Technique

R1 Accurate 

correctly identifies whether a combination is effective or not

R2 Scalable

allows combining more than two defenses

R3 Non-invasive

requires no changes to the defenses being combined

R4 General

applicable to different types of defenses
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Limitations of Prior Work

Optimization[1,2]: game theory, regularization, constraint solving

• Ad-hoc optimizations specific to defenses (not general)

• Trade-off between effectiveness with utility (poor scalability)

• Invasive require modifying defenses

Mutually Exclusive Placement[3,4] (aka naïve technique)

• Defenses in different stages are non-conflicting

Scalable, non-invasive, and general but not accurate 

• Incorrectly flags non-conflicting same-stage defenses (False negatives)

• Incorrectly flags conflicting defenses in different stages (False positives)

Training Data

Training

Architecture & 

Configuration

Model

Input

Output

Pre-Training In-Training Post-Training

[1] Wu et al. Augment then smooth: Reconciling differential privacy with certified robustness. TMLR 2024.

[2] Tran et al. Differentially private and fair deep learning: A Lagrangian dual approach. AAAI 2021.

[3] S.Szyller, N. Asokan. Conflicting Interactions Among Protection Mechanisms for Machine Learning Models. AAAI 2023. 

[4] Yaghini et al. Learning with Impartiality to Walk on the Pareto Frontier of Fairness, Privacy and Utility. ArXiV 2023.

https://openreview.net/forum?id=YN0IcnXqsr
https://ojs.aaai.org/index.php/AAAI/article/view/17193
https://ojs.aaai.org/index.php/AAAI/article/view/17193
https://ojs.aaai.org/index.php/AAAI/article/view/17193
https://arxiv.org/abs/2207.01991
https://arxiv.org/abs/2302.09183
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Def\Con: Motivation

Naïve technique is promising, meets three requirements but not accurate

Can we improve naïve technique to account for reasons underlying conflicts?

Reasons for Conflict: Defenses D1 and D2 (in order) conflict if

• D1 uses risk protected by D2

• Changes by D2 overrides changes by D1
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Def\Con: Step S-1

S1: Same Stage?

S2: D2 local/no 

change?
S3: D1 uses risk?

S4: D2 mitigates risk?

No Yes

No

No

No

Yes

Yes

Yes
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Def\Con: Step S-2

S1: Same Stage

S2: D2 local/no 

change?
S3: D1 uses risk?

S4: D2 mitigates risk?

Yes No

YesNo Yes No

Yes NoD2’s global changes 

override D1
D2 does not interfere 

with D1

Global changes ➞ modify model (e.g., pruning) or training data (e.g., synthetic data) 

Local changes ➞ affect specific data records (e.g., watermarks)

No changes ➞ fingerprinting or explanations 
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Def\Con: Step S-3

S1: Same Stage

S2: D2 local/no 

change?
S3: D1 uses risk?

S4: D2 mitigates risk?

No Yes

No

No

No

Yes

Yes

Yes

D2 does not interfere 

with D1
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Def\Con: Step S-4

S1: Same Stage

S2: D2 local/no 

change?
S3: D1 uses risk?

S4: D2 mitigates risk?

Yes Yes

Yes

Yes

No

No

No

No

Does D2 protect against 

Rk either explicitly or via 

unintended interaction? 

D2 reduces susceptibility to 

risk making D1 ineffective

D2 does not interfere 

with D1
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Evaluation: Accuracy of Def\Con

TABLE 6. EVA L UATI NG COM BI NATI ONS (D̂): FOR METRICS, WE USE ↑ (↓) WHERE HIGHER (L OWER) VA LUE I S BETTER. FOR DEFENSE

EFFECTIVENESS, GREEN WHEN φD̂
( . )

IS ≥ “ SINGLE DEFENSE” BA SEL INE; ORANGE FOR < “ SINGLE DEFENSE” BUT > “ NO DEFENSE” ; RED FOR ≤

“ NO DEFENSE” . FOR TECHNIQUE PREDI CTIONS, WE USE ∆ (Ψ) FOR AL IGNMENT A MONG DEFENSES, AND ∆ (Ψ) FOR CONFLI CT FOR DEF\CON

(NA ÏV E TECHNIQUE). D1 AND D2 INDICATE THE ORDER OF A PPLYING THE DEFENSES. (WE MENTION MODEL UTI L ITY φU FOR CONTEXT).

Combinations Metr ic FMNI ST UTKFACE Combinations Metr ic FMNI ST UTKFACE

C9
D1 : Evasion Robustness (Devs.I n) φD̂

u (↑) 89.69 ± 0.20 73.87 ± 0.53
C24

D1 : Watermarking-M (DwmM .Pr e) φD̂
u (↑) 90.18 ± 0.21 79.76 ± 0.63

D2 : Watermarking-M (DwmM .Post ) φD̂
wmacc (↑) 100.00 ± 0.00 76.19 ± 13.13 D2 : Explanations (Dexpl .Post ) φD̂

err (↓) 0.14 ± 0.04 0.02 ± 0.03

(Ψ, ∆ ) φD̂
robacc (↓) 83.94 ± 0.64 67.14 ± 0.49 (Ψ, ∆ ) φD̂

wmacc (↑) 99.93 ± 0.06 99.96 ± 0.08

C10
D1 : Outlier Robustness (Dout .I n) φD̂

u (↑) 89.50 ± 0.21 79.25 ± 1.06
C25

D1 : Watermarking-M (DwmM .I n) φD̂
u (↑) 86.94 ± 0.50 72.16 ± 5.13

D2 : Fingerprinting (Dfng.Post ) φD̂
ASR (↓) 9.94 ± 0.22 56.09 ± 12.98 D2 : Explanations (Dexpl .Post ) φD̂

err (↓) 0.19 ± 0.07 0.37 ± 0.18

(Ψ, ∆ ) φD̂
pval (↓) <0.05 <0.05 (Ψ, ∆ ) φD̂

wmacc (↑) 98.24 ± 0.66 97.60 ± 3.54

C11
D1 : Outlier Robustness (Dout .Post ) φD̂

u (↑) 84.73 ± 1.72 63.70 ± 3.87
C26

D1 : Watermarking-D (DwmD.Pr e) φD̂
u (↑) 90.04 ± 0.60 79.03 ± 1.10

D2 : Fingerprinting (Dfng.Post ) φD̂
ASR (↓) 61.36 ± 23.96 0.02 ± 0.03 D2 : Explanations (Dexpl .Post ) φD̂

err (↓) 0.10 ± 0.04 0.54 ± 0.01

(Ψ, ∆ ) φD̂
pval (↓) <0.05 <0.05 (Ψ, ∆ ) φD̂

RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

C12
D1 : Evasion Robustness (Devs.I n) φD̂

u (↑) 89.60 ± 0.18 74.62 ± 0.60
C27

D1 : Outlier Robustness (Dout .I n) φD̂
u (↑) 89.39 ± 0.24 78.71 ± 0.20

D2 : Explanations (Dexpl .Post ) φD̂
err (↓) 0.12 ± 0.03 0.53 ± 0.05 D2 : Explanations (Dexpl .Post ) φD̂

ASR (↓) 9.79 ± 0.15 44.35 ± 30.07

(Ψ, ∆ ) φD̂
robacc (↑) 84.68 ± 0.18 67.26 ± 0.42 (Ψ, ∆ ) φD̂

err (↓) 0.06 ± 0.02 0.47 ± 0.02

C13
D1 : Group Fairness (Dfair .I n) φD̂

u (↑) 66.73 ± 3.24
C28

D1 : Outlier Robustness (Dout .Post ) φD̂
u (↑) 84.62 ± 3.56 63.80 ± 3.37

D2 : Outlier Robustness (Dout .Post ) φD̂
ASR (↓) 20.21 ± 39.90 D2 : Explanations (Dexpl .Post ) φD̂

ASR (↓) 76.11 ± 15.85 0.00 ± 0.00

(Ψ, ∆ ) φD̂
eqodds (↓) 2.72 ± 3.20 (Ψ, ∆ ) φD̂

err (↓) 0.08 ± 0.01 0.15 ± 0.06

C14
D1 : Watermarking-M (DwmM .Pr e) φD̂

u (↑) 79.02 ± 0.40
C29

D1 : Fingerprinting (Dfng.Post ) φD̂
u (↑) 90.56 ± 0.16 80.42 ± 0.59

D2 : Group Fairness (Dfair .I n) φD̂
wmacc (↑) 98.88 ± 2.13 D2 : Explanations (Dexpl .Post ) φD̂

pval (↓) < 0.05 < 0.05

(Ψ, ∆ ) φD̂
eqodds (↓) 0.00 ± 0.00 (Ψ, ∆ ) φD̂

err (↓) 0.11 ± 0.02 0.50 ± 0.03

C15
D1 : Group Fairness (Dfair .I n) φD̂

u (↑) 76.95 ± 1.94
C30

D1 : Watermarking-D (DwmD.Pr e) φD̂
u (↑) 90.19 ± 0.59 79.80 ± 0.48

D2 : Watermarking-M (DwmM .Post ) φD̂
wmacc (↑) 80.95 ± 0.00 D2 : Fingerprinting (Dfng.Post ) φD̂

pval (↓) < 0.05 < 0.05

(Ψ, ∆ ) φD̂
eqodds (↓) 7.87 ± 4.72 (Ψ, ∆ ) φD̂

RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

C16
D1 : Watermarking-D (DwmD.Pr e) φD̂

u (↑) 78.97 ± 1.21
C31

D1 : Differential Privacy (Ddp.I n) φD̂
u (↑) 86.83 ± 0.20 74.62 ± 0.49

D2 : Group Fairness (Dfair .I n) φD̂
RSD (↑) 100.00 ± 0.00 D2 : Watermarking-M (DwmM .Post ) φD̂

wmacc (↑) 100.00 ± 0.00 79.05 ± 3.81

(Ψ, ∆ ) φD̂
eqodds (↓) 0.00 ± 0.00 (Ψ, ∆ ) φD̂

dp (↓) ϵdp = 1.36 ϵdp = 2.89

C17
D1 : Group Fairness (Dfair .I n) φD̂

u (↑) 78.67 ± 1.46
C32

D1 : Watermarking-D (DwmD.Pr e) φD̂
u (↑) 90.24 ± 0.29 78.94 ± 0.95

D2 : Fingerprinting (Dfng.Post ) φD̂
pval (↓) 0.68 ± 0.21 D2 : Watermarking-M (DwmM .Post ) φD̂

RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

(Ψ, ∆ ) φD̂
eqodds (↓) 7.46 ± 5.43 (Ψ, ∆ ) φD̂

wmacc (↑) 100.00 ± 0.00 62.26 ± 3.77

C18
D1 : Group Fairness (Dfair .I n) φD̂

u (↑) 80.52 ± 0.44
C33

D1 : Outlier Robustness (Dout .Post ) φD̂
u (↑) 85.09 ± 1.94 67.09 ± 2.81

D2 : Explanations (Dexpl .Post ) φD̂
err (↓) 0.16 ± 0.06 D2 : Watermarking-M (DwmM .Post ) φD̂

wmacc (↑) 100.00 ± 0.00 73.33 ± 8.83

(Ψ, ∆ ) φD̂
eqodds (↓) 12.62 ± 4.20 (Ψ, ∆ ) φD̂

ASR (↑) 59.48 ± 24.91 40.20 ± 28.82

C19
D1 : Outlier Robustness (Dout .I n) φD̂

u (↑) 89.53 ± 0.36 79.00 ± 0.56
C34

D1 : Watermarking-D (DwmD.Pr e) φD̂
u (↑) 90.31 ± 0.27 78.53 ± 1.75

D2 : Watermarking-M (DwmM .Post ) φD̂
wmacc (↑) 100.00 ± 0.00 69.52 ± 6.46 D2 : Watermarking-M (DwmM .Pr e) φD̂

wmacc (↑) 99.96 ± 0.0 100.00 ± 0.00

(Ψ, ∆ ) φD̂
ASR (↑) 10.48 ± 0.46 38.90 ± 38.73 (Ψ, ∆ ) φD̂

RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

C20
D1 : Watermarking-M (DwmM .Post ) φD̂

u (↑) 90.93 ± 0.18 80.53 ± 0.23
C35

D1 : Evasion Robustness (Devs.I n) φD̂
u (↑) 71.39 ± 12.12 68.59 ± 6.72

D2 : Explanations (Dexpl .Post ) φD̂
wmacc (↑) 100.00 ± 0.00 72.38 ± 3.56 D2 : Outlier Robustness (Dout .Post ) φD̂

robacc (↑) 59.12 ± 9.05 49.28 ± 3.31

(Ψ, ∆ ) φD̂
err (↓) 0.11 ± 0.02 0.55 ± 0.02 (Ψ, ∆ ) φD̂

ASR (↓) 73.62 ± 13.51 13.50 ± 25.94

C21
D1 : Watermarking-D (DwmD.Pr e) φD̂

u (↑) 89.46 ± 0.32 79.00 ± 0.67
C36

D1 : Watermarking-M (DwmM .Pr e) φD̂
u (↑) 89.48 ± 0.15 79.20 ± 0.60

D2 : Outlier Robustness (Dout .I n) φD̂
ASR (↓) 10.18 ± 0.40 77.39 ± 35.23 D2 : Outlier Robustness (Dout .I n) φD̂

ASR (↓) 10.18 ± 0.46 46.92 ± 36.92

(Ψ, ∆ ) φD̂
RSD (↑) 0.00 ± 0.00 80.00 ± 40.00 (Ψ, ∆ ) φD̂

wmacc (↑) 10.18 ± 0.46 46.92 ± 36.92

C22
D1 : Watermarking-D (DwmD.Pr e) φD̂

u (↑) 84.45 ± 0.56 79.88 ± 0.27
C37

D1 : Watermarking-M (DwmM .Pr e) φD̂
u (↑) 82.86 ± 4.16 64.09 ± 3.09

D2 : Watermarking-M (DwmM .I n) φD̂
wmacc (↑) 89.25 ± 3.48 99.98 ± 0.03 D2 : Outlier Robustness (Dout .Post ) φD̂

ASR (↓) 71.32 ± 14.11 0.00 ± 0.00

(Ψ, ∆ ) φD̂
RSD (↑) 100.00 ± 0.00 100.00 ± 0.00 (Ψ, ∆ ) φD̂

wmacc (↑) 71.31 ± 14.10 0.00 ± 0.00

C23
D1 : Watermarking-D (DwmD.Pr e) φD̂

u (↑) 82.90 ± 2.06 69.02 ± 1.96
C38

D1 : Watermarking-M (DwmM .I n) φD̂
u (↑) 66.68 ± 9.80 73.69 ± 3.01

D2 : Outlier Robustness (Dout .Post ) φD̂
ASR (↓) 64.55 ± 21.23 0.01 ± 0.01 D2 : Outlier Robustness (Dout .Post )) φD̂

ASR (↓) 58.59 ± 19.22 99.60 ± 0.37

(Ψ, ∆ ) φD̂
RSD (↑) 80.00 ± 40.00 20.00 ± 40.00 (Ψ, ∆ ) φD̂

wmacc (↑) 58.65 ± 19.23 99.73 ± 0.29

which include C9, C10, C12, C13, C15, C17, C18,
C19, C27, C31, and C35.

2) D1, such as DwmM .Pr e and DwmD.Pr e, uses a risk
(S-3=yes), but D2 does not protect against this risk
(S-4=no). Hence, there is no conflict and wemark such
combinationsas (Ψ, ∆ ) which includeC14, C16, C22,
C24, C25, C26, C30, and C32.

3) D1, such as DwmM .Pr e and DwmD.Pr e, uses a risk

(S-3=yes), and D2 protects against these risks (e.g.,
Dout). There is a conflict and we mark such combina-
tions as (Ψ, ∆ ) which include C21, C23, C36, C37,
and C38.

Evaluation of Combination Effectiveness. We empirically
evaluate the 30 combinations on FMNI ST and UTKFACE,
and the results are indicated in Table 2. For each combina-
tion, we compare the effectiveness metrics for each defense

C1-C8 Eight combinations as ground truth from systematization of prior work

• Def\Con: 90% (7/8) vs. Naïve: 40% (4/8) balanced accuracy

C9-C38 Empirically evaluated remaining 30 unexplored combinations 

• Def\Con: 81% (27/30) vs. Naïve: 36% (18/30) balanced accuracy
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Summary

Protecting against multiple risks is important

Def\Con: a combination technique which is

More accurate than naïve technique

Inherits other requirements from naïve technique

• Combines more than two defenses (scalable)

• Does not require modifying defenses (non-invasive)

• Does not depend on specific defenses to mark conflict (general)

[1] Duddu et al. Combining Machine Learning Defenses without Conflicts. ArXiv. 2025.

https://arxiv.org/abs/2411.09776
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Talk Outline

“Meta Concerns” for Building Trust in ML Systems

• What are the unintended implications of applying defenses? 

• How can we protect against multiple risks simultaneously?

• How can we design efficient mechanisms to demonstrate ML properties?
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“Nutrition Labels” to Advertise ML Properties Exist

Datasheets[1,2] Model Cards[3] Inference Cards

(Proposed)

Training
ML 

modelDataset

Architecture or

Pre-trained Model
Data Metrics 

(bias, size)

Accuracy, Fairness, 

Robustness

Test
Dataset

Input

Output
Inference API

[1] Gebru et al. Datasheets for datasets. Communications of ACM. 2021.

[2] Pushkarna et al. Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI. FaccT. 2022.
[3] Mitchell et al. Model Cards for Model Reporting. Facct. 2019.

Collectively, refer to them as “ML property cards”

Model Cards[3]

Code

https://dl.acm.org/doi/10.1145/3458723
https://dl.acm.org/doi/10.1145/3531146.3533231
https://dl.acm.org/doi/10.1145/3287560.3287596
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ML Property Cards are Not Verifiable

Need verifiable ML property cards

• Prevent inclusion of false information[1]

• Demonstrate correct execution of ML operations 

• For accountability in ML pipeline and regulatory compliance

[1] Mithril-Security. PoisonGPT: How to poison LLM supply chain on HuggingFace. 2023.

https://blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-hugging-face-to-spread-fake-news/
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Verifiable ML Property Cards via Property Attestation

ML property attestation[1]

• Prover (e.g., model trainer) demonstrates properties to Verifier (e.g., regulator, customer)

[1] Duddu et al. Attesting Distributional Properties of Machine Learning Training Data. ESORICS’24.

Mental Model for Attestations

Certificate showing that something came from software with a certain hash

Output from 

Program

Program 

running on 

HW platform

Certified by 

root of trust

https://arxiv.org/abs/2308.09552
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Desiderata for ML Property Attestation Mechanism

R1 Efficient 

Incur low computation overhead

R2 Versatile 

Support various ML properties for training and inference

R3 Scalable

Support multiple verifiers

R4 Robust

Resist evasion of attestations by malicious prover
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Existing ML Property Attestation Mechanisms

ML-based Attestations

Error-prone and not robust: e,g.,

• proof of learning[1,2],

• re-purposing distribution inference for distributional property attestation[3]

Cryptographic Attestations (e.g., Zero-knowledge Proofs, Multi-party Computation) 

Inefficient: e,g.,

• ~13 minutes for IO attestation (e.g., using ZKPs with LLMs[4])

Not Versatile: Limited to crypto-friendly properties

[1] Zhang et al. “Adversarial Examples” for Proof- of-Learning. IEEE S&P’22. 

[2] Fang et al. Proof of Learning is more Broken than You Think. IEEE EuroS&P’23
[3] Duddu et al. Attesting Distributional Properties of Machine Learning Training Data. ESORICS’24.
[4] Sun et al. zkLLMs: Zero Knowledge Proofs for Large Language Models. CCS’24. 

https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2208.03567
https://arxiv.org/abs/2308.09552
https://arxiv.org/abs/2404.16109
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Can TEEs Enable ML Property Attestation?

Hardware-assisted TEEs are pervasive

• Isolated execution: Isolated Execution Environment

• Protected storage: Sealing

• Ability to convince remote verifiers: (Remote) Attestation

Property Attestation for TEEs

• Remote attestation was extended to properties of binaries running inside TEEs[1]

• Can we adapt this for attesting ML properties? 

Recent developments make ML training/inference within TEEs feasible (efficient)

• Intel’s AMX extensions for SGX[2], Nvidia’s H100 GPU[3]

• Available with Cloud providers

[1] Sadeghi and Stuble. Property-based attestation for computing platforms: caring about properties, not mechanisms. 2004.

[2] Google Cloud Team. We tested Intel’s AMX CPU accelerator for AI and here’s what we learned. 
[3] Zhu et al. Confidential Computing on Nvidia’s H100 GPU: A Performance Benchmark Study. 

ARM TrustZone Intel SGX

https://dl.acm.org/doi/10.1145/1065907.1066038
https://dl.acm.org/doi/10.1145/1065907.1066038
https://dl.acm.org/doi/10.1145/1065907.1066038
https://cloud.google.com/blog/products/identity-security/we-tested-intels-amx-cpu-accelerator-for-ai-heres-what-we-learned
https://arxiv.org/abs/2409.03992v2
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://software.intel.com/en-us/sgx
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System and Adversary Models

Model trainer and/or owner trains, evaluates, and deploys model

Verifier (e.g., regulator, customer) wants to be convinced of some model property

Prover wants to demonstrate ML properties (e.g., training, evaluation, inference)

Verifier trust Prover’s TEE and software outside of TEE (e.g., OS, hypervisor) is untrusted

Two roots of trust for Verifier

• TEE Manufacturer (e.g., Intel): certifies attestation signing keys 

• Trusted certifiers (e.g., CIFAR): provides additional certificates (e.g., for datasets)
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Laminator: Framework

Measurer within TEE measures desired property

TEE produces attestation (property card fragment)

Assertion bundle

• combines certificates and attestations from various sources

• checkable by Verifier to realize verifiable property cards

Trusted Certifier

Non-computational 

property certificates

Measurer PyTorch

Python

Gramine LibOS

Attestations

Assertion 

Bundle

Verifier

Verifiable 

Property 

Cards

SGX Enclave

TDX Virtual Machine

Trusted Certifier
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Types of ML Property Attestations

Dataset Enclave Training Enclave

Training Dataset Configuration

Dist. Property DistAtt Model PoT

….. …..

Training Dataset InputModelTest Dataset

Metric Enclave Inference Enclave

….. …..

Metric Output IOAtt
AccAtt, FairAtt, 

RobAtt

Model

Dataset Attestation Proof of Training Evaluation Attestation Inference Attestation

Dist. Property

Hashes

Training Dataset

Signature

Model

Hashes

Training Dataset

Signature

Configuration

Assertion

Training dataset 

satisfies property

Assertion

Model trained on training dataset 

with specific configuration

Model

Hashes

Test Dataset

Signature

Metric

Assertion

Model satisfies <metric> 

on test dataset

Model

Hashes

Output

Signature

Input

Assertion

Model generated <output> 

for given <input>

Datasheets Model Cards Model Cards Inference Cards
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Evaluation: Efficiency

Input and output measurement roughly scales with input and output size

Attestation constant across all datasets and models

Overall, Laminator overhead is low

• Distribution attestation: 0.36% and 2.05%

• Proof of Training: 0.00-0.32%

• Evaluation attestation: 0.00-0.35%



38

Evaluation: Efficiency

Baseline cost for single inference is low compared to attestation

• High overhead between 39% and 3955% (aka “overhead w/ att”)

Amortizing overhead over several IO attestations

• Generate a signing keypair during initialization and attest it once

• Sign each inference result for indirect, low-cost attestation (“overhead w/ sgn”)

• Overhead between 0.17% and 1.17%
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Summary

Laminator uses hardware-assisted attestations for verifiable ML property cards:

• Efficient: Incurs low computation overhead

• Scalable: Attestations can be checked by multiple verifiers 

• Versatile: Any ML property specified in python can be attested

• Robust: Inherited from TEE integrity guarantees

[1] Duddu et al. Attesting Distributional Properties of Training Data for Machine Learning. ESORICS. 2024. 

[2] Duddu et al. Laminator: Verifiable ML Property Cards using Hardware-assisted Attestations. ACM CODASPY. 2025. 

https://arxiv.org/abs/2308.09552
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
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Takeaways

[1] Duddu et al. SoK: Unintended Interactions among Machine Learning Defenses and Risks. IEEE S&P. 2024.

[2] Duddu et al. Combining Machine Learning Defenses without Conflicts. ArXiv. 2025.
[3] Duddu et al. Attesting Distributional Properties of Training Data for Machine Learning. ESORICS. 2024. 
[4] Duddu et al. Laminator: Verifiable ML Property Cards using Hardware-assisted Attestations. ACM CODASPY. 2025. 

Distinguished Paper Award

Unintended Interactions[1]

Laminator[4]ML Property Attestations[3]

Combining Defenses[2]

Not enough to design defenses for single risk

Need to include other “Meta Concerns”:

• Framework to understand unintended interactions

• Combination technique to combine ML defenses

• Verifiable ML Property Cards for accountability

https://arxiv.org/abs/2312.04542
https://arxiv.org/abs/2411.09776
https://arxiv.org/abs/2308.09552
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548


Backup Slides: Background
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Training

Code Provider

ML 

modelDataset
Client

Machine Learning Pipeline

Inference API

Where is the adversary?

What can they do? 

Data ProviderData Owners Model Trainer Model Owner Service Provider

Model Provider

Architecture or

Pre-trained Model
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Client

(Security) Risk of Evasion

[1] Croce and Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. ICML 2020.

[2] Madry et al. Towards Deep Learning Models Resistant to Adversarial Attacks. ICML 2018. 

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider

90% Tabby Cat Adversarial noise 100% Guacamole

+ =

https://dl.acm.org/doi/10.5555/3524938.3525144
https://dl.acm.org/doi/10.5555/3524938.3525144
https://dl.acm.org/doi/10.5555/3524938.3525144
https://openreview.net/forum?id=rJzIBfZAb
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(Security) Risk of Poisoning

[1] Shafahi et al. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks. NeurIPS 2018.

[2] Zhang et al. Persistent Pre-training Poisoning of LLMs. ICLR 2025. 

[3] Langford et al. Architectural Neural Backdoors from First Principles. IEEE S&P 2025.

[4] Bagdasaryan and Shmatikov. Blind Backdoors in Deep Learning Models. Usenix Sec 2021.

Client

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider
Backdoor

https://dl.acm.org/doi/10.5555/3327345.3327509
https://dl.acm.org/doi/10.5555/3327345.3327509
https://dl.acm.org/doi/10.5555/3327345.3327509
https://openreview.net/forum?id=eiqrnVaeIw
https://openreview.net/forum?id=eiqrnVaeIw
https://openreview.net/forum?id=eiqrnVaeIw
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a060/21B7R5Paz60
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a060/21B7R5Paz60
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
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(Security) Risk of Unauthorized Model Ownership

ML 

model Client
Dataset

ML 

model

Stolen

model

Trainer

Inference API

[1] Krishna et al. Thieves on Sesame Street! Model Extraction of BERT-based APIs. ICLR 2020.

[2] Orekondy et al. Knockoff-Nets: Stealing Functionality of Black-Box Models. CVPR 2019.

Data ProviderData Owners Model Trainer Model Owner Service Provider

Code Provider

Architecture or

Pre-trained Model

Model Provider

https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=Byl5NREFDr
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
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(Security) Risk of Unauthorized Data Usage

Client

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider

Copyright Infringing Data

Non-Consensual Personal Data
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Inference API

(Privacy) Risk of Inference Attacks

[1] Carlini et al. Membership Inference Attacks From First Principles. IEEE S&P 2022.

[2] Jayaraman and Evans. Are Attribute Inference Attacks Just Imputation? CCS 2022.

[3] Suri et al. Dissecting Distribution Inference. IEEE SatML 2023.

[4] Carlini et al. Extracting Training Data From Large Language Models. Usenix Sec 2021.

Distribution[3]: Infer Statistical 

Properties of Training Dataset

Attribute[2]: Infer Sensitive 

Attribute in Input

Training

Code Provider

ML 

modelDataset
Client

Data ProviderData Owners Model Trainer Model Owner Service Provider

Model Provider

Architecture or

Pre-trained Model
Reconstruction[4]: Generate 

Training Dataset from Model

Membership[1]: Input in 

Training Dataset?

https://ieeexplore.ieee.org/document/9833649
https://dl.acm.org/doi/10.1145/3548606.3560663
https://www.computer.org/csdl/proceedings-article/satml/2023/629900a150/1NCHH7oWvyU
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
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(Fairness) Risk of Discriminatory Behavior

Training

Code Provider

ML 

modelDataset

Data ProviderData Owners Model Trainer

Model Provider

Architecture or

Pre-trained Model
Opaque[2]: Incomprehensible 

Model Behavior

[1] Hardt et al. Equality of Opportunity in Supervised Learning. NeurIPS 2016.

[2] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS 2017.

Bias[1]: Discriminatory Behavior 

across Demographic Subgroups

Client

https://dl.acm.org/doi/10.5555/3157382.3157469
https://dl.acm.org/doi/10.5555/3295222.3295230
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(Security) Robustness against Evasion

(Pre-training) Data Augmentation[1]: Transformations of training data to improve robustness

(In-training) Adversarial Training[2]: Train model with perturbed data records 

(Post-training) Input Processing[3]: Transform inputs to filter noise

[1] Rebuffi et al. Data Augmentation Can Improve Robustness. NeurIPS 2021.

[2] Madry et al. Towards Deep Learning Models Resistant to Adversarial Attacks. ICML 2018.

[3] Nie et al. Diffusion Models for Adversarial Purification. ICML 2022.

Post-training

In-training

Pre-training

Client

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider

https://openreview.net/forum?id=kgVJBBThdSZ
https://openreview.net/forum?id=rJzIBfZAb
https://proceedings.mlr.press/v162/nie22a.html
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(Security) Robustness against Poisoning

(Pre-training) Data Sanitization[1]: Detect and remove outliers (poisons) from training data

(In-training) Fine-tuning[2]: Update model to reduce influence of outliers

(Post-training) Pruning[3]: Remove model parameters to reduce influence of outliers

[1] Borgnia et al. Strong Data Augmentation Sanitizes Poisoning and Backdoors Attacks without an Accuracy Trade-off. ICASSP 2021.

[2] Patrini et al. Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach. CVPR 2017.

[3] Li et al. Reconstructive Neuron Pruning for Backdoor Defense. ICML 2023.

Client

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider

https://ieeexplore.ieee.org/abstract/document/9414862
https://ieeexplore.ieee.org/abstract/document/9414862
https://ieeexplore.ieee.org/abstract/document/9414862
https://ieeexplore.ieee.org/document/8099723
https://dl.acm.org/doi/10.5555/3618408.3619227
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(Security) Model Watermarking / Fingerprinting

(Pre-training) Watermarking[1]: Train on backdoors as watermarks

(Post-training) Watermarking[2]: Flip predictions as watermarks

(Post-training) Fingerprinting[3]: Unique model characteristics as fingerprints

[1] Adi et al. Tuning your Weakness into a Strength: Watermarking Deep Neural Networks by Backdoors. USENIX Sec 2018.

[2] Szyller et al. DAWN: Dynamic Adversarial Watermarking of Neural Networks. ACM MM. 2021.

[3] Waheed et al. GrOVe: Ownership Verification of Graph Neural Networks using Embeddings . IEEE S&P 2024. (Our work)

ML 

model Client
Dataset

ML 

model

Suspect

model

Training

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Code Provider

Architecture or

Pre-trained Model

Model Provider

Suspect Model Like 

Target Model?

https://dl.acm.org/doi/10.5555/3277203.3277324
https://dl.acm.org/doi/10.1145/3474085.3475591
https://ieeexplore.ieee.org/document/10646643
https://ieeexplore.ieee.org/document/10646643
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(Security) Dataset Watermarking

(Pre-training) Watermarking[1,2]: Train on backdoors as watermarks

[1] Sablyarolles et al. Radioactive Data: Tracing through Training. ICML 2020.

[2] Chen et al. Catch Me if You Can: Detecting Unauthorized Data Use In Training Deep Learning Models. CCS 2024.

Client

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider
Backdoor Watermark

Watermarked Data used 

for Training?

https://proceedings.mlr.press/v119/sablayrolles20a.html
https://dl.acm.org/doi/10.1145/3658644.3690858
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(Privacy) Differential Privacy

(Pre-training) DP Synthetic Dataset[1]: Transform training data with DP guarantees

(In-training) DPSGD[2,3]: Add gradient noise to reduce influence of individual data records

[1] Lin et al. Differentially Private Synthetic Data via Foundation Model APIs 1: Images. ICLR 2024.

[2] Abadi et al. Deep Learning with Differential Privacy. CCS 2016.

[3] Papernot et al. Scalable Private Learning with PATE. ICLR 2018.

Client

Training

Code Provider

ML 

modelDataset

Inference API

Data ProviderData Owners Model Trainer Model Owner Service Provider

Architecture or

Pre-trained Model

Model Provider

https://openreview.net/forum?id=YEhQs8POIo
https://dl.acm.org/doi/10.1145/2976749.2978318
https://openreview.net/forum?id=rkZB1XbRZ


54

ML 

model

(Fairness) Defenses against Fairness Risks

Client

Explanations 

Training

Code Provider

Dataset

Data ProviderData Owners Model Trainer

Model Provider

Architecture or

Pre-trained Model

(Pre-training) Fair synthetic data[1]: Transform training data for downstream fairness

(In-training) Regularization[2]: Add fairness constraint for optimization

(Post-training) Calibration[3]: Adjust threshold over predictions

(Post-training) Explanations[4]: Measure influence of input attributes to predictions

Model Owner Service Provider

[1] Zemel et al. Learning Fair Representations. ICML 2013.

[2] Hardt et al. Equality of Opportunity in Supervised Learning. NeurIPS 2016.

[3] Pleiss et al. On Fairness and Calibration. NeurIPS 2017.

[4] Lundberg and Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS 2017.

https://proceedings.mlr.press/v28/zemel13.html
https://dl.acm.org/doi/10.5555/3157382.3157469
https://papers.nips.cc/paper_files/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html
https://dl.acm.org/doi/10.5555/3295222.3295230
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Underlying causes: overfitting and memorization

No Overfitting + No Memorization Overfitting + No Memorization

No Overfitting + Memorization Overfitting + Memorization

Overfitting and memorization are distinct and 

can occur simultaneously[1,2]

Overfitting

• Difference between train and test accuracy[3]

• Aggregate metric computed across datasets

Memorization of training data records

• Difference in model prediction on a data record 

with and without it in training dataset[4]

• Metric for individual data records

[1] Carlini et al. The Secret Sharer: Evaluating and testing unintended memorization in neural networks . USENIX Sec 2019. 

[2] Burg and Williams. On memorization in probabilistic deep generative models. NeurIPS 2019. 

[3] Hardt et al. Train faster, generalize better: Stability of stochastic gradient descent. ICML 2016. 

[4] Feldman. Does learning require memorization? A Short Tale About a Long Tail. STOC 2020. 

https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2106.03216
https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1906.05271
https://arxiv.org/abs/1906.05271
https://arxiv.org/abs/1906.05271
https://arxiv.org/abs/1906.05271
https://arxiv.org/abs/1906.05271
https://arxiv.org/abs/1906.05271
https://arxiv.org/abs/1906.05271
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Dominant factors

Active factors are exploited by the attacks: O1, O2, O3

Passive factors (data/model configuration): D1, D2, D3, D4, M1

Attacks often exploit active factors, we deem them “dominant”

PD1 (Differential Privacy) and R1 (Evasion)➞● [1,2]

• D2➞●; O1 ➞●; O3 ➞●

FD1 (Group Fairness) and P1 (Membership Inference) ➞●[3]

• D4➞●; O3➞●

LEGEND

O1 Curvature smoothness of the objective function

O2 Distinguishability of model observables across 

datasets (O2.1), subgroups (O2.2),  and models (O2.3) 

O3 Distance of training data to decision boundary

D1 Size of training data

D2 Tail length of distribution

D3 Number of attributes

D4 Priority of learning stable attributes

M1 Model capacity

[1] Tursynbek et al. Robustness threats of Differential Privacy. NeurIPS Privacy Preserving ML Workshop. 2020. 

[2] Boenisch et al. Gradient masking and the underestimated robustness threats of differential privacy in deep learning. ArXiv 2021. 

[3] Chang and Shokri. On the Privacy Risks of Algorithmic Fairness. EuroS&P 2021. 

https://arxiv.org/abs/2012.07828
https://arxiv.org/abs/2105.07985
https://arxiv.org/abs/2011.03731
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Framework: factors influencing overfitting

Bias is an error from poor hyperparameter choices for model

• High bias (smaller models) ➞ prevents learning relations between attributes and labels

Variance is an error from sensitivity to changes in the training dataset

• High variance ➞ model fits noise in training data

Tradeoffs can be balanced using:

• D1 Size of training data inversely correlated with overfitting: likelihood that the model

encounters a similar data record is higher 

• M1 Model capacity inversely correlated with overfitting if model is too simple to fit data
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Framework: factors influencing memorization

D2 Tail length of distribution correlates with memorization of tail classes (rare or outliers)

D3 Number of attributes inversely correlates with memorization of individual attributes

D4 Priority of learning stable attributes correlates with generalization

O1 Curvature smoothness of the objective function results in variable memorization of 

data records as it determines convergence of their loss towards a minima 

O2 Distinguishability of model observables across datasets (O2.1), subgroups (O2.2),    

and models (O2.3) correlates with memorization

O3 Distance of training data to decision boundary inversely correlates with memorization

M1 Model capacity Increasing capacity can increase memorization of data records
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Explanations (FD2) vs. distribution inference (P4) (1/2)

Conjectured interactions from common factor:

O2.1 Distinguishability of observables across datasets: FD2 ↑ , P4 ↑ (➞●)

Non-common factors: 

D3 # Attributes: risk may decrease with D3 (lower memorization)

M1 Model Capacity: risk may increase with M1 (higher memorization)

Empirical Evidence (confirms ●)

Explanations ➞ increased susceptibility to inference: attack accuracy > 50% for most ratios

Integrated Gradients SmoothGrad DeepLift
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Explanations (FD2) vs. distribution inference (P4) (2/2)

Non-common factor D3 (# Attributes): More attributes ➞ lower attack success

Non-common factor M1 (Model Capacity): Higher capacity ➞ higher attack success

# Parameters Integrated

Gradients

DeepLift SmoothGrad

5.7K 47.57 ± 4.25 49.19 ± 2.75 53.26 ± 0.10

44K 53.29 ± 3.65 50.86 ± 3.24 62.40 ± 0.95

274K 62.60 ± 2.74 67.73 ± 1.69 70.21 ± 0.73

733K 69.90 ± 3.24 73.78 ± 1.03 74.09 ± 2.17

# Attributes Integrated

Gradients

DeepLift SmoothGrad

15 81.07 ± 2.13 78.74 ± 1.66 65.40 ± 1.39

25 66.09 ± 0.95 73.64 ± 1.38 59.42 ± 1.09

35 50.43 ± 0.59 59.93 ± 2.81 56.78 ± 1.93
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Exceptions to guideline
Differences in adversary models can change the interaction type

• RD1 (Adversarial training) and R3 (Unauthorized Model Ownership)

• Guideline predicts ➞● (M1 but not dominant) 

• If adversary is malicious suspect➞●[1]; If adversary is malicious accuser➞●[2]

• PD1 (Differential privacy) and P4 (Distribution Inference)

• Guideline predicts ➞● (O2.1) which matches with empirical evidence[3]

• If adversary knows victim is DP-trained, they can DP-train shadow models➞●[3] 

• FD1 (Group fairness) and P3 (Attribute Inference)

• Guideline predicts ➞● (O2.2) which matches with empirical evidence[4]

• If adversary knows fairness algorithm, they can calibrate their attack➞●[5] 

Some defenses and risks have too few factors

• RD2 (Outlier removal), R2 (Poisoning), R3 (Unauthorized model ownership)

[1] Khaled et al. Careful What You Wish For: On the Extraction of Adversarially Trained Models. PST 2022. 

[2] Liu et al. False Claims against Model Ownership Resolution. Usenix SEC 2024. 

[3] Suri et al. Dissecting Distribution Inference. SatML 2023. 

[4] Aalmoes et al. On the alignment of Group Fairness with Attribute Privacy. ArXiv 2022. 

[5] Ferry et al. Exploiting Fairness to Enhance Sensitive Attributes Reconstruction. SatML 2023. 

https://arxiv.org/abs/2207.10561
https://arxiv.org/abs/2207.10561
https://arxiv.org/abs/2207.10561
https://arxiv.org/abs/2304.06607
https://arxiv.org/abs/2212.07591
https://arxiv.org/html/2211.10209v2
https://arxiv.org/abs/2209.01215
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How to Draw Conclusions from Assertion Bundle

Multiple attestations in assertion bundle help draw conclusions about ML properties

• Combining training-time attestations

Models was trained on Dtr satisfying distributional properties p

• Combining training-time and inference-time attestations

Output O obtained from model for input I, where M was trained on Dtr satisfying property p, 

and satisfies the required {accuracy, fairness, robustness} requirements
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Laminator: Experimental Setup

Model Description # Parameters Model Size (MB)

CENSUS-S MLP: [128] 12,290 0.05

CENSUS-L MLP: [128, 256, 512, 256] 308,482 1.2

UTKFACE-S VGG11 9,227,010 36.95

UTKFACE-L VGG16 14,724,162 58.96

IMDB-S LSTM: [64, 256, 256] 920,385 3.69

IMDB-L LSTM: [64, 256, 256, 256, 256] 1,973,057 7.60

Datasets: CENSUS (tabular), UTKFACE (images), and IMDB (text)

CENSUS and UTKFACE have sensitive attributes (for distribution attestation)

• IMDB not applicable distribution attestation
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